asyncio 的 coroutine对象 与 Future对象使用指南

yipeiwu_com6年前Python基础

coroutine 与 Future 的关系

看起来两者是一样的,因为都可以用以下的语法来异步获取结果,

result = await future
result = await coroutine

实际上,coroutine 是生成器函数,它既可以从外部接受参数,也可以产生结果。使用 coroutine 的好处是,我们可以暂停一个函数,然后稍后恢复执行。比如在涉及到网路操作的情况下,能够停下函数直到响应到来。在停下的这段时间内,我们可以切换到其他任务继续执行。

而 Future 更像是 Javascript 中的 Promise 对象。它是一个占位符,其值会在将来被计算出来。在上述的例子中,当我们在等待网络 IO 函数完成时,函数会给我们一个容器,Promise 会在完成时填充该容器。填充完毕后,我们可以用回调函数来获取实际结果。

Task 对象是 Future 的子类,它将 coroutine 和 Future 联系在一起,将 coroutine 封装成一个 Future 对象。

一般会看到两种任务启动方法,

tasks = asyncio.gather(
  asyncio.ensure_future(func1()),
  asyncio.ensure_future(func2())
)
loop.run_until_complete(tasks)


tasks = [
  asyncio.ensure_future(func1()),
  asyncio.ensure_future(func2())
  ]
loop.run_until_complete(asyncio.wait(tasks))

ensure_future 可以将 coroutine 封装成 Task。asyncio.gather 将一些 Future 和 coroutine 封装成一个 Future。

asyncio.wait 则本身就是 coroutine。

run_until_complete 既可以接收 Future 对象,也可以是 coroutine 对象,

BaseEventLoop.run_until_complete(future)

Run until the Future is done.
If the argument is a coroutine object, it is wrapped by ensure_future().
Return the Future's result, or raise its exception.

Task 任务的正确退出方式

在 asyncio 的任务循环中,如果使用 CTRL-C 退出的话,即使捕获了异常,Event Loop 中的任务会报错,出现如下的错误,

Task was destroyed but it is pending!
task: <Task pending coro=<kill_me() done, defined at test.py:5> wait_for=<Future pending cb=[Task._wakeup()]>>

根据官方文档,Task 对象只有在以下几种情况,会认为是退出,

a result / exception are available, or that the future was cancelled

Task 对象的 cancel 和其父类 Future 略有不同。当调用 Task.cancel() 后,对应 coroutine 会在事件循环的下一轮中抛出 CancelledError 异常。使用 Future.cancelled() 并不能立即返回 True(用来表示任务结束),只有在上述异常被处理任务结束后才算是 cancelled。

故结束任务可以用

for task in asyncio.Task.all_tasks():
  task.cancel()

这种方法将所有任务找出并 cancel。

但 CTRL-C 也会将事件循环停止,所以有必要重启事件循环,

try:
  loop.run_until_complete(tasks)
except KeyboardInterrupt as e:
  for task in asyncio.Task.all_tasks():
    task.cancel()
  loop.run_forever() # restart loop
finally:
  loop.close()

在每个 Task 中捕获异常是必要的,如果不确定,可以使用

asyncio.gather(..., return_exceptions=True)

将异常转换为正常的结果返回。

相关文章

高效测试用例组织算法pairwise之Python实现方法

高效测试用例组织算法pairwise之Python实现方法

开篇: 测试过程中,对于多参数参数多值的情况进行测试用例组织,之前一直使用【正交分析法】进行用例组织,说白了就是把每个参数的所有值分别和其他参数的值做一个全量组合,用Python脚本实现...

数据清洗--DataFrame中的空值处理方法

数据清洗是一项复杂且繁琐的工作,同时也是整个数据分析过程中最为重要的环节。 在python中空值被显示为NaN。首先,我们要构造一个包含NaN的DataFrame对象。 >&g...

Python使用requests发送POST请求实例代码

本文研究的主要是Python使用requests发送POST请求的相关内容,具体介绍如下。 一个http请求包括三个部分,为别为请求行,请求报头,消息主体,类似以下这样: 请求行...

使用TensorFlow对图像进行随机旋转的实现示例

使用TensorFlow对图像进行随机旋转的实现示例

在使用深度学习对图像进行训练时,对图像进行随机旋转有助于提升模型泛化能力。然而之前在做旋转等预处理工作时,都是先对图像进行旋转后保存到本地,然后再输入模型进行训练,这样的过程会增加工作量...

Python struct.unpack

1. 设置fomat格式,如下: 复制代码 代码如下:# 取前5个字符,跳过4个字符华,再取3个字符 format = '5s 4x 3s' 2. 使用struck.unpack获取子字...