Python中异常重试的解决方案详解

yipeiwu_com6年前Python基础

前言

大家在做数据抓取的时候,经常遇到由于网络问题导致的程序保存,先前只是记录了错误内容,并对错误内容进行后期处理。

原先的流程:

def crawl_page(url):
 pass
 
def log_error(url):
 pass
 
url = ""
try:
 crawl_page(url)
except:
 log_error(url)

改进后的流程:

attempts = 0
success = False
while attempts < 3 and not success:
 try:
  crawl_page(url)
  success = True
 except:
  attempts += 1
  if attempts == 3:
   break

最近发现的新的解决方案:retrying

retrying是一个 Python的重试包,可以用来自动重试一些可能运行失败的程序段。retrying提供一个装饰器函数retry,被装饰的函数就会在运行失败的条件下重新执行,默认只要一直报错就会不断重试。

import random
from retrying import retry
 
@retry
def do_something_unreliable():
 if random.randint(0, 10) > 1:
  raise IOError("Broken sauce, everything is hosed!!!111one")
 else:
  return "Awesome sauce!"
 
print do_something_unreliable()

如果我们运行have_a_try函数,那么直到random.randint返回5,它才会执行结束,否则会一直重新执行。

retry还可以接受一些参数,这个从源码中Retrying类的初始化函数可以看到可选的参数:

  • stop_max_attempt_number:用来设定最大的尝试次数,超过该次数就停止重试
  •  stop_max_delay:比如设置成10000,那么从被装饰的函数开始执行的时间点开始,到函数成功运行结束或者失败报错中止的时间点,只要这段时间超过10秒,函数就不会再执行了
  • wait_fixed:设置在两次retrying之间的停留时间
  • wait_random_min和wait_random_max:用随机的方式产生两次retrying之间的停留时间
  • wait_exponential_multiplier和wait_exponential_max:以指数的形式产生两次retrying之间的停留时间,产生的值为2^previous_attempt_number * wait_exponential_multiplierprevious_attempt_number是前面已经retry的次数,如果产生的这个值超过了wait_exponential_max的大小,那么之后两个retrying之间的停留值都为wait_exponential_max。这个设计迎合了exponential backoff算法,可以减轻阻塞的情况。
  • 我们可以指定要在出现哪些异常的时候再去retry,这个要用retry_on_exception传入一个函数对象:
def retry_if_io_error(exception):
 return isinstance(exception, IOError)
 
@retry(retry_on_exception=retry_if_io_error)
def read_a_file():
 with open("file", "r") as f:
  return f.read()

在执行read_a_file函数的过程中,如果报出异常,那么这个异常会以形参exception传入retry_if_io_error函数中,如果exceptionIOError那么就进行retry,如果不是就停止运行并抛出异常。

我们还可以指定要在得到哪些结果的时候去retry,这个要用retry_on_result传入一个函数对象:

def retry_if_result_none(result):
 return result is None
 
@retry(retry_on_result=retry_if_result_none)
def get_result():
 return None

在执行get_result成功后,会将函数的返回值通过形参result的形式传入retry_if_result_none函数中,如果返回值是None那么就进行retry,否则就结束并返回函数值。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对【听图阁-专注于Python设计】的支持。

相关文章

Django多进程滚动日志问题解决方案

这篇文章主要介绍了Django多进程滚动日志问题解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 使用RotatingFileH...

python利用smtplib实现QQ邮箱发送邮件

python利用smtplib实现QQ邮箱发送邮件

python的smtplib提供了一种很方便的途径发送电子邮件。它对smtp协议进行了简单的封装。 下面是一个利用smtplib,实现QQ邮箱发送邮件的例子。 首先必须要打开QQ邮箱的s...

浅析pandas 数据结构中的DataFrame

浅析pandas 数据结构中的DataFrame

DataFrame 类型类似于数据库表结构的数据结构,其含有行索引和列索引,可以将DataFrame 想成是由相同索引的Series组成的Dict类型。在其底层是通过二维以及一维的数据块...

python的schedule定时任务模块二次封装方法

通过定时来执行任务,我们日常工作生活中会经常用到。python有schedule这个库,简单好用,比如,可以每秒,每分,每小时,每天,每天的某个时间点,间隔天数的某个时间点定时执行,另外...

Python中使用插入排序算法的简单分析与代码示例

问题描述 将一组随机排列的数字重新按照从小到大的顺序排列。 插入算法 每次从数组中取一个数字,与现有数字比较并插入适当位置。 如此重复,每次均可以保持现有数字按照顺序排列,直到数字取完,...