利用Python读取文件的四种不同方法比对

yipeiwu_com5年前Python基础

前言

大家都知道Python 读文件的方式多种多样,但是当需要读取一个大文件的时候,不同的读取方式会有不一样的效果。下面就来看看详细的介绍吧。

场景

逐行读取一个 2.9G 的大文件

  • CPU i7 6820HQ
  • RAM 32G

方法

对每一行的读取进行一次分割字符串操作

以下方法都使用 with…as 方法打开文件。

with 语句适用于对资源进行访问的场合,确保不管使用过程中是否发生异常都会执行必要的“清理”操作,释放资源,比如文件使用后自动关闭、线程中锁的自动获取和释放等。

方法一 最通用的读文件方式

with open(file, 'r') as fh:
 for line in fh.readlines():
 line.split("|")

运行结果: 耗时 15.4346568584 秒

系统监视器中显示内存从 4.8G 一下子飙到了 8.4G, fh.readlines() 将读取的所有行数据存到内存,这种方法适合小文件。

方法二

with open(file, 'r') as fh:
 line = fh.readline()
 while line:
 line.split("|")

运行结果: 耗时 22.3531990051 秒

内存几乎没有变化,因为内存中只存取一行的数据,但是时间明显比上一次的长,对于进一步处理数据来说效率不高。

方法三

with open(file) as fh:
 for line in fh:
 line.split("|")

运行结果: 耗时 13.9956979752 秒

内存几乎没有变化,速度也比方法二快。

for line in fh 将文件对象 fh 视为可迭代的,它自动使用缓冲的 IO 和内存管理,因此您不必担心大文件。这是很 pythonic 的方式!

方法四 fileinput 模块

for line in fileinput.input(file):
 line.split("|")

运行结果: 耗时 26.1103110313 秒

内存增加了 200-300 MB,速度是以上最慢的。

总结

以上方法仅供参考,公认的大文件读取方法还是三最好。但是具体情况还是要根据机器的性能、处理数据的复杂度。

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对【听图阁-专注于Python设计】的支持。

相关文章

Mac下Anaconda的安装和使用教程

前提 在刚接触python的时候我想大多数人都会面临一个问题,我到底是选择2还是3,因为现在网上好多的资料和视频项目中都还是用的2,我们跟着学习的时候肯定也是首先从2开始学的,但是我们心...

Flask框架中密码的加盐哈希加密和验证功能的用法详解

密码加密简介 密码存储的主要形式: 明文存储:肉眼就可以识别,没有任何安全性。 加密存储:通过一定的变换形式,使得密码原文不易被识别。 密码加密的几类方式: 明文转码加...

Python2随机数列生成器简单实例

本文实例讲述了Python2随机数列生成器。分享给大家供大家参考,具体如下: #filename:randNumber.py import random while True:...

详解python:time模块用法

详解python:time模块用法

time模块下有两种时间表示方法: 第1种是:时间戳的方式。是基于1970年1月1日0时0分0秒的偏移。浮点数。 第2种是:struct_time()类型的表示方法。gmtime()和l...

pandas把dataframe转成Series,改变列中值的类型方法

使用 pd.Series把dataframe转成Series ts = pd.Series(df['Value'].values, index=df['Date']) 使用asty...