Python 稀疏矩阵-sparse 存储和转换

yipeiwu_com6年前Python基础

稀疏矩阵-sparsep

from scipy import sparse

稀疏矩阵的储存形式

在科学与工程领域中求解线性模型时经常出现许多大型的矩阵,这些矩阵中大部分的元素都为0,被称为稀疏矩阵。用NumPy的ndarray数组保存这样的矩阵,将很浪费内存,由于矩阵的稀疏特性,可以通过只保存非零元素的相关信息,从而节约内存的使用。此外,针对这种特殊结构的矩阵编写运算函数,也可以提高矩阵的运算速度。

scipy.sparse库中提供了多种表示稀疏矩阵的格式,每种格式都有不同的用处,其中dok_matrix和lil_matrix适合逐渐添加元素。

dok_matrix从dict继承,它采用字典保存矩阵中不为0的元素:字典的键是一个保存元素(行,列)信息的元组,其对应的值为矩阵中位于(行,列)中的元素值。显然字典格式的稀疏矩阵很适合单个元素的添加、删除和存取操作。通常用来逐渐添加非零元素,然后转换成其它支持快速运算的格式。

a = sparse.dok_matrix((10, 5))
a[2:5, 3] = 1.0, 2.0, 3.0
print a.keys()
print a.values()
[(2, 3), (3, 3), (4, 3)]
[1.0, 2.0, 3.0]

lil_matrix使用两个列表保存非零元素。data保存每行中的非零元素,rows保存非零元素所在的列。这种格式也很适合逐个添加元素,并且能快速获取行相关的数据。

b = sparse.lil_matrix((10, 5))
b[2, 3] = 1.0
b[3, 4] = 2.0
b[3, 2] = 3.0
print b.data
print b.rows
[[] [] [1.0] [3.0, 2.0] [] [] [] [] [] []]
[[] [] [3] [2, 4] [] [] [] [] [] []]

coo_matrix采用三个数组row、col和data保存非零元素的信息。这三个数组的长度相同,row保存元素的行,col保存元素的列,data保存元素的值。coo_matrix不支持元素的存取和增删,一旦创建之后,除了将之转换成其它格式的矩阵,几乎无法对其做任何操作和矩阵运算。

coo_matrix支持重复元素,即同一行列坐标可以出现多次,当转换为其它格式的矩阵时,将对同一行列坐标对应的多个值进行求和。在下面的例子中,(2, 3)对应两个值:1和10,将其转换为ndarray数组时这两个值加在一起,所以最终矩阵中(2, 3)坐标上的值为11。

许多稀疏矩阵的数据都是采用这种格式保存在文件中的,例如某个CSV文件中可能有这样三列:“用户ID,商品ID,评价值”。采用numpy.loadtxt或pandas.read_csv将数据读入之后,可以通过coo_matrix快速将其转换成稀疏矩阵:矩阵的每行对应一位用户,每列对应一件商品,而元素值为用户对商品的评价。

row = [2, 3, 3, 2]
col = [3, 4, 2, 3]
data = [1, 2, 3, 10]
c = sparse.coo_matrix((data, (row, col)), shape=(5, 6))
print c.col, c.row, c.data
print c.toarray()
[3 4 2 3] [2 3 3 2] [ 1 2 3 10]
[[ 0 0 0 0 0 0]
 [ 0 0 0 0 0 0]
 [ 0 0 0 11 0 0]
 [ 0 0 3 0 2 0]
 [ 0 0 0 0 0 0]]

个人操作中选择,coo_matrix 选在因为涉及稀疏矩阵运算,但是如果不用其他形式存储则复杂度太高(时间和空间)1000*1000的matrix大约话2h,也是要命了。无奈想到了Pajek软件中数据的输入格式三元组:

所以想到将自己的数据处理成类似的三元组!

即“matrix矩阵”—>"tuple三元组"—>"sparseMatrix2tuple"—>"scipy.sparse"

 感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

相关文章

Python之eval()函数危险性浅析

一般来说Python的eval()函数可以把字符串“123”变成数字类型的123,但是PP3E上说它很危险,还可以执行其他命令! 对此进行一些试验。果然,如果python写的cgi程序中...

Python 变量类型及命名规则介绍

首字母为英文和下划线,其它部分则可以是英文、数字和下划线(即:_),而变量名称是区分大小写,即变量temp与Temp为不同变量。变量的基本用法如下: 复制代码 代码如下:# 例:使用变...

python接口自动化(十七)--Json 数据处理---一次爬坑记(详解)

python接口自动化(十七)--Json 数据处理---一次爬坑记(详解)

简介 有些 post 的请求参数是 json 格式的,这个前面发送post 请求里面提到过,需要导入 json模块处理。现在企业公司一般常见的接口因为json数据容易处理,所以绝大多数返...

Django实现登录随机验证码的示例代码

Django实现登录随机验证码的示例代码

登录验证码是每个网站登录时的基本标配,网上也有很多相应的文章, 但是从生成验证码到 应用到自己的网站上的全步骤,并没有看到很多, 为了节约大家的时间,我把整体步骤写下来, 即拿即用哈 1...

在Python中使用mechanize模块模拟浏览器功能

知道如何快速在命令行或者python脚本中实例化一个浏览器通常是非常有用的。 每次我需要做任何关于web的自动任务时,我都使用这段python代码去模拟一个浏览器。  ...