Python实现的快速排序算法详解

yipeiwu_com6年前Python基础

本文实例讲述了Python实现的快速排序算法。分享给大家供大家参考,具体如下:

快速排序基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

如序列[6,8,1,4,3,9],选择6作为基准数。从右向左扫描,寻找比基准数小的数字为3,交换6和3的位置,[3,8,1,4,6,9],接着从左向右扫描,寻找比基准数大的数字为8,交换6和8的位置,[3,6,1,4,8,9]。重复上述过程,直到基准数左边的数字都比其小,右边的数字都比其大。然后分别对基准数左边和右边的序列递归进行上述方法。

实现代码如下:

def parttion(v, left, right):
  key = v[left]
  low = left
  high = right
  while low < high:
    while (low < high) and (v[high] >= key):
      high -= 1
    v[low] = v[high]
    while (low < high) and (v[low] <= key):
      low += 1
    v[high] = v[low]
    v[low] = key
  return low
def quicksort(v, left, right):
  if left < right:
    p = parttion(v, left, right)
    quicksort(v, left, p-1)
    quicksort(v, p+1, right)
  return v
s = [6, 8, 1, 4, 3, 9, 5, 4, 11, 2, 2, 15, 6]
print("before sort:",s)
s1 = quicksort(s, left = 0, right = len(s) - 1)
print("after sort:",s1)

运行结果:

before sort: [6, 8, 1, 4, 3, 9, 5, 4, 11, 2, 2, 15, 6]
after sort: [1, 2, 2, 3, 4, 4, 5, 6, 6, 8, 9, 11, 15]

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

python基础之入门必看操作

python基础之入门必看操作

这里提供在使用python进行开发中常使用到的方法技巧,如有不对欢迎批评指正。 要点:开发中类、变量特性查询,类型就是类,断言的使用,深浅复制判断等 python脚本文件是使用UTF-8...

python交互界面的退出方法

1.在终端输入python,进入之后退出: quit() 或者 exit() 2,进入idle shell下的退出 关闭: quit() 或者 exit() 或...

Python2.5/2.6实用教程 入门基础篇

起步走 复制代码 代码如下: #! /usr/bin/python a=2 b=3 c="test" c=a+b print "execution result: %i"%c 知识点...

Python设计模式之迭代器模式原理与用法实例分析

Python设计模式之迭代器模式原理与用法实例分析

本文实例讲述了Python设计模式之迭代器模式原理与用法。分享给大家供大家参考,具体如下: 迭代器模式(Iterator Pattern):提供方法顺序访问一个聚合对象中各元素,而又不暴...

pytorch .detach() .detach_() 和 .data用于切断反向传播的实现

当我们再训练网络的时候可能希望保持一部分的网络参数不变,只对其中一部分的参数进行调整;或者值训练部分分支网络,并不让其梯度对主网络的梯度造成影响,这时候我们就需要使用detach()函数...