Python基于回溯法子集树模板解决马踏棋盘问题示例

yipeiwu_com6年前Python基础

本文实例讲述了Python基于回溯法子集树模板解决马踏棋盘问题。分享给大家供大家参考,具体如下:

问题

将马放到国际象棋的8*8棋盘board上的某个方格中,马按走棋规则进行移动,走遍棋盘上的64个方格,要求每个方格进入且只进入一次,找出一种可行的方案。

分析

说明:这个图是5*5的棋盘。

类似于迷宫问题,只不过此问题的解长度固定为64

每到一格,就有[(-2,1),(-1,2),(1,2),(2,1),(2,-1),(1,-2),(-1,-2),(-2,-1)]顺时针8个方向可以选择。

走到一格称为走了一步,把每一步看作元素,8个方向看作这一步的状态空间。

套用回溯法子集树模板。

代码

'''马踏棋盘'''
n = 5 # 8太慢了,改为5
p = [(-2,1),(-1,2),(1,2),(2,1),(2,-1),(1,-2),(-1,-2),(-2,-1)] # 状态空间,8个方向
entry = (2,2) # 出发地
x = [None]*(n*n) # 一个解,长度固定64,形如[(2,2),(4,3),...]
X = []    # 一组解
# 冲突检测
def conflict(k):
  global n,p, x, X
  # 步子 x[k] 超出边界
  if x[k][0] < 0 or x[k][0] >= n or x[k][1] < 0 or x[k][1] >= n:
    return True
  # 步子 x[k] 已经走过
  if x[k] in x[:k]:
    return True
  return False # 无冲突
# 回溯法(递归版本)
def subsets(k): # 到达第k个元素
  global n, p, x, X
  if k == n*n: # 超出最尾的元素
    print(x)
    #X.append(x[:]) # 保存(一个解)
  else:
    for i in p: # 遍历元素 x[k-1] 的状态空间: 8个方向
      x[k] = (x[k-1][0] + i[0], x[k-1][1] + i[1])
      if not conflict(k): # 剪枝
        subsets(k+1)
# 测试
x[0] = entry # 入口
subsets(1)  # 开始走第k=1步

效果图

更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

python使用xauth方式登录饭否网然后发消息

开发环境:python版本2.X 复制代码 代码如下:#!/usr/bin/env python# -*- coding:utf-8 -*-# 适合python版本:2.X import...

Django contenttypes 框架详解(小结)

Django contenttypes 框架详解(小结)

一、什么是Django ContentTypes? Django ContentTypes是由Django框架提供的一个核心功能,它对当前项目中所有基于Django驱动的model提供了...

Flask之flask-script模块使用

Flask Script扩展提供向Flask插入外部脚本的功能,包括运行一个开发用的服务器,一个定制的Python shell,设置数据库的脚本,cronjobs,及其他运行在web应用...

Djang的model创建的字段和参数详解

class test_orm(models.Model): id = models.AutoField(primary_key=True) # int自增列,必须填入参数pr...

python监控键盘输入实例代码

python监控键盘输入实例代码

本文研究的主要是python监控键盘输入的相关代码,用到了os,sys,time等,具体实现代码如下: #!/usr/bin/env python # -*- coding: u...