Python基于动态规划算法解决01背包问题实例

yipeiwu_com6年前Python基础

本文实例讲述了Python基于动态规划算法解决01背包问题。分享给大家供大家参考,具体如下:

在01背包问题中,在选择是否要把一个物品加到背包中,必须把该物品加进去的子问题的解与不取该物品的子问题的解进行比较,这种方式形成的问题导致了许多重叠子问题,使用动态规划来解决。n=5是物品的数量,c=10是书包能承受的重量,w=[2,2,6,5,4]是每个物品的重量,v=[6,3,5,4,6]是每个物品的价值,先把递归的定义写出来:

然后自底向上实现,代码如下:

def bag(n,c,w,v):
  res=[[-1 for j in range(c+1)] for i in range(n+1)]
  for j in range(c+1):
    res[0][j]=0
  for i in range(1,n+1):
    for j in range(1,c+1):
      res[i][j]=res[i-1][j]
      if j>=w[i-1] and res[i][j]<res[i-1][j-w[i-1]]+v[i-1]:
        res[i][j]=res[i-1][j-w[i-1]]+v[i-1]
  return res
def show(n,c,w,res):
  print('最大价值为:',res[n][c])
  x=[False for i in range(n)]
  j=c
  for i in range(1,n+1):
    if res[i][j]>res[i-1][j]:
      x[i-1]=True
      j-=w[i-1]
  print('选择的物品为:')
  for i in range(n):
    if x[i]:
      print('第',i,'个,',end='')
  print('')
if __name__=='__main__':
  n=5
  c=10
  w=[2,2,6,5,4]
  v=[6,3,5,4,6]
  res=bag(n,c,w,v)
  show(n,c,w,res)

输出结果如下:

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

Python+Selenium+PIL+Tesseract自动识别验证码进行一键登录

Python+Selenium+PIL+Tesseract自动识别验证码进行一键登录

本文介绍了Python+Selenium+PIL+Tesseract自动识别验证码进行一键登录,分享给大家,具体如下: Python 2.7 IDE Pycharm 5.0.3...

django 外键model的互相读取方法

先设定一个关系模型如下: from django.db import models class Blog(models.Model): name = models.CharFiel...

Python配置虚拟环境图文步骤

Python配置虚拟环境图文步骤

使用Python进行项目开发时,由于不同的项目需要,可能会配置多个开发环境,不同开发环境之间的项目依赖包如果混合在一起,可能会引起意想不到的错误,本文主要介绍如何通过虚拟环境隔离不同开发...

使用PYTHON解析Wireshark的PCAP文件方法

PYTHON首先要安装scapy模块 PY3的安装scapy-python3,使用PIP安装就好了,注意,PY3无法使用pyinstaller打包文件,PY2正常 PY2的安装scapy...

windows下pycharm安装、创建文件、配置默认模板

windows下pycharm安装、创建文件、配置默认模板

本文为大家分享了windows下pycharm安装、创建文件、配置默认模板的具体步骤,供大家参考,具体内容如下 步骤: 下包 —->安装——>创建文件—->定制模板...