python实现随机梯度下降(SGD)

yipeiwu_com6年前Python基础

使用神经网络进行样本训练,要实现随机梯度下降算法。这里我根据麦子学院彭亮老师的讲解,总结如下,(神经网络的结构在另一篇博客中已经定义):

def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None):
  if test_data:
    n_test = len(test_data)#有多少个测试集
    n = len(training_data)
    for j in xrange(epochs):
      random.shuffle(training_data)
      mini_batches = [
        training_data[k:k+mini_batch_size] 
        for k in xrange(0,n,mini_batch_size)]
      for mini_batch in mini_batches:
        self.update_mini_batch(mini_batch, eta)
      if test_data:
        print "Epoch {0}: {1}/{2}".format(j, self.evaluate(test_data),n_test)
      else:
        print "Epoch {0} complete".format(j)  

其中training_data是训练集,是由很多的tuples(元组)组成。每一个元组(x,y)代表一个实例,x是图像的向量表示,y是图像的类别。
epochs表示训练多少轮。
mini_batch_size表示每一次训练的实例个数。
eta表示学习率。
test_data表示测试集。
比较重要的函数是self.update_mini_batch,他是更新权重和偏置的关键函数,接下来就定义这个函数。

def update_mini_batch(self, mini_batch,eta): 
  nabla_b = [np.zeros(b.shape) for b in self.biases]
  nabla_w = [np.zeros(w.shape) for w in self.weights]
  for x,y in mini_batch:
    delta_nabla_b, delta_nable_w = self.backprop(x,y)#目标函数对b和w的偏导数
    nabla_b = [nb+dnb for nb,dnb in zip(nabla_b,delta_nabla_b)]
    nabla_w = [nw+dnw for nw,dnw in zip(nabla_w,delta_nabla_w)]#累加b和w
  #最终更新权重为
  self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)]
  self.baises = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.baises, nabla_b)]

这个update_mini_batch函数根据你传入的一些数据进行更新神经网络的权重和偏置。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python绘制频率分布直方图的示例

Python绘制频率分布直方图的示例

项目中在前期经常要看下数据的分布情况,这对于探究数据规律非常有用。概率分布表示样本数据的模样,长的好不好看如果有图像展示出来就非常完美了,使用Python绘制频率分布直方图非常简洁,因为...

python实现搜索本地文件信息写入文件的方法

python实现搜索本地文件信息写入文件的方法

本文实例讲述了python实现搜索本地文件信息写入文件的方法。分享给大家供大家参考,具体如下: 主要功能: 在指定的盘符,如D盘,搜索出与用户给定后缀名(如:jpg,png)相关的文件,...

opencv导入头文件时报错#include的解决方法

opencv导入头文件时报错#include的解决方法

一、首先要确保你的电脑上opencv的环境和visual studio上的环境都配置好了,测试的时候通过了没有问题。 二、那么只要在你项目里面的属性设置里面配置一下包含目录就OK了,具体...

基于Linux系统中python matplotlib画图的中文显示问题的解决方法

最近想学习一些python数据分析的内容,就弄了个爬虫爬取了一些数据,并打算用Anaconda一套的工具(pandas, numpy, scipy, matplotlib, jupyte...

一篇文章搞懂Python的类与对象名称空间

一篇文章搞懂Python的类与对象名称空间

代码块的分类 python中分几种代码块类型,它们都有自己的作用域,或者说名称空间: 文件或模块整体是一个代码块,名称空间为全局范围 函数代码块,名称空间为函数自身范围,是本地作用域,...