Python+matplotlib+numpy实现在不同平面的二维条形图

yipeiwu_com6年前Python基础

在不同平面上绘制二维条形图。

本实例制作了一个3d图,其中有二维条形图投射到平面y=0,y=1,等。

演示结果:

完整代码:

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

# Fixing random state for reproducibility
np.random.seed(19680801)


fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

colors = ['r', 'g', 'b', 'y']
yticks = [3, 2, 1, 0]
for c, k in zip(colors, yticks):
  # Generate the random data for the y=k 'layer'.
  xs = np.arange(20)
  ys = np.random.rand(20)

  # You can provide either a single color or an array with the same length as
  # xs and ys. To demonstrate this, we color the first bar of each set cyan.
  cs = [c] * len(xs)
  cs[0] = 'c'

  # Plot the bar graph given by xs and ys on the plane y=k with 80% opacity.
  ax.bar(xs, ys, zs=k, zdir='y', color=cs, alpha=0.8)

ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')

# On the y axis let's only label the discrete values that we have data for.
ax.set_yticks(yticks)

plt.show()

脚本运行时间:(0分0.063秒)

总结

以上就是本文关于Python+matplotlib+numpy实现在不同平面的二维条形图的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

ansible作为python模块库使用的方法实例

前言 ansible是新出现的自动化运维工具,基于Python开发,集合了众多运维工具(puppet、cfengine、chef、func、fabric)的优点,实现了批量系统配置、批量...

Python读取一个目录下所有目录和文件的方法

本文实例讲述了Python读取一个目录下所有目录和文件的方法。分享给大家供大家参考,具体如下: 这里介绍的是刚学python时的一个读取目录的列子,给大家分享下: #!/usr/bi...

python性能测量工具cProfile使用解析

背景: Python是一种解释性的语言,执行速度相比C、C++等语言十分缓慢;因此我们需要在其它地方上下功夫来提高代码的执行速度。 首先需要对代码进行分析,这个时候则需要用一些工具。...

ML神器:sklearn的快速使用及入门

ML神器:sklearn的快速使用及入门

传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类。本文我们将依据传统机器学习的流程,看看在...

详解PyTorch手写数字识别(MNIST数据集)

详解PyTorch手写数字识别(MNIST数据集)

MNIST 手写数字识别是一个比较简单的入门项目,相当于深度学习中的 Hello World,可以让我们快速了解构建神经网络的大致过程。虽然网上的案例比较多,但还是要自己实现一遍。代码采...