Python+matplotlib+numpy实现在不同平面的二维条形图

yipeiwu_com6年前Python基础

在不同平面上绘制二维条形图。

本实例制作了一个3d图,其中有二维条形图投射到平面y=0,y=1,等。

演示结果:

完整代码:

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

# Fixing random state for reproducibility
np.random.seed(19680801)


fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

colors = ['r', 'g', 'b', 'y']
yticks = [3, 2, 1, 0]
for c, k in zip(colors, yticks):
  # Generate the random data for the y=k 'layer'.
  xs = np.arange(20)
  ys = np.random.rand(20)

  # You can provide either a single color or an array with the same length as
  # xs and ys. To demonstrate this, we color the first bar of each set cyan.
  cs = [c] * len(xs)
  cs[0] = 'c'

  # Plot the bar graph given by xs and ys on the plane y=k with 80% opacity.
  ax.bar(xs, ys, zs=k, zdir='y', color=cs, alpha=0.8)

ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')

# On the y axis let's only label the discrete values that we have data for.
ax.set_yticks(yticks)

plt.show()

脚本运行时间:(0分0.063秒)

总结

以上就是本文关于Python+matplotlib+numpy实现在不同平面的二维条形图的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

Python实现朴素贝叶斯的学习与分类过程解析

Python实现朴素贝叶斯的学习与分类过程解析

 概念简介: 朴素贝叶斯基于贝叶斯定理,它假设输入随机变量的特征值是条件独立的,故称之为“朴素”。简单介绍贝叶斯定理: 乍看起来似乎是要求一个概率,还要先得到额外三个概率,...

python3+selenium实现126邮箱登陆并发送邮件功能

本文实例为大家分享了python3实现126邮箱登陆并发送邮件的具体代码,供大家参考,具体内容如下 基于selenium,使用chrome浏览器,完成126邮箱登陆并发送发邮件功能,暂时...

浅谈Python编程中3个常用的数据结构和算法

本篇文章将介绍3种常见的数据结构和同数据有关的算法。此外,在collections模块中也包含了针对各种数据结构的解决方案。 Python内置了许多非常有用的数据结构,比如列表(list...

Python中的getopt函数使用详解

函数原型: getopt.getopt(args, shortopts, longopts=[]) 参数解释:     args:args...

浅谈python字典多键值及重复键值的使用

浅谈python字典多键值及重复键值的使用

在python中使用字典,格式如下: dict={ key1:value1 , key2;value2 ...} 在实际访问字典值时的使用格式如下: dict[key] 多键值 字典的...