Python+matplotlib+numpy实现在不同平面的二维条形图

yipeiwu_com6年前Python基础

在不同平面上绘制二维条形图。

本实例制作了一个3d图,其中有二维条形图投射到平面y=0,y=1,等。

演示结果:

完整代码:

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

# Fixing random state for reproducibility
np.random.seed(19680801)


fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

colors = ['r', 'g', 'b', 'y']
yticks = [3, 2, 1, 0]
for c, k in zip(colors, yticks):
  # Generate the random data for the y=k 'layer'.
  xs = np.arange(20)
  ys = np.random.rand(20)

  # You can provide either a single color or an array with the same length as
  # xs and ys. To demonstrate this, we color the first bar of each set cyan.
  cs = [c] * len(xs)
  cs[0] = 'c'

  # Plot the bar graph given by xs and ys on the plane y=k with 80% opacity.
  ax.bar(xs, ys, zs=k, zdir='y', color=cs, alpha=0.8)

ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')

# On the y axis let's only label the discrete values that we have data for.
ax.set_yticks(yticks)

plt.show()

脚本运行时间:(0分0.063秒)

总结

以上就是本文关于Python+matplotlib+numpy实现在不同平面的二维条形图的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

Gauss-Seidel迭代算法的Python实现详解

import numpy as np import time 1.1 Gauss-Seidel迭代算法 def GaussSeidel_tensor_V2(A,b,Delta,...

python3利用Dlib19.7实现人脸68个特征点标定

python3利用Dlib19.7实现人脸68个特征点标定

0.引言 利用Dlib官方训练好的模型“shape_predictor_68_face_landmarks.dat”进行68点标定,利用OpenCv进行图像化处理,在人脸上画出68个点,...

python文件操作相关知识点总结整理

本文汇总了python文件操作相关知识点。分享给大家供大家参考,具体如下: 总是记不住API。昨晚写的时候用到了这些,但是没记住,于是就索性整理一下吧: python中对文件、文件夹(文...

Python实现计算两个时间之间相差天数的方法

本文实例讲述了Python实现计算两个时间之间相差天数的方法。分享给大家供大家参考,具体如下: #-*- encoding:UTF-8 -*- from datetime impor...

Python随机读取文件实现实例

Python随机读取文件 代码如下 import os import random rootdir = "d:\\face\\train" file_names = [] for...