Python+matplotlib+numpy实现在不同平面的二维条形图

yipeiwu_com6年前Python基础

在不同平面上绘制二维条形图。

本实例制作了一个3d图,其中有二维条形图投射到平面y=0,y=1,等。

演示结果:

完整代码:

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

# Fixing random state for reproducibility
np.random.seed(19680801)


fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

colors = ['r', 'g', 'b', 'y']
yticks = [3, 2, 1, 0]
for c, k in zip(colors, yticks):
  # Generate the random data for the y=k 'layer'.
  xs = np.arange(20)
  ys = np.random.rand(20)

  # You can provide either a single color or an array with the same length as
  # xs and ys. To demonstrate this, we color the first bar of each set cyan.
  cs = [c] * len(xs)
  cs[0] = 'c'

  # Plot the bar graph given by xs and ys on the plane y=k with 80% opacity.
  ax.bar(xs, ys, zs=k, zdir='y', color=cs, alpha=0.8)

ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')

# On the y axis let's only label the discrete values that we have data for.
ax.set_yticks(yticks)

plt.show()

脚本运行时间:(0分0.063秒)

总结

以上就是本文关于Python+matplotlib+numpy实现在不同平面的二维条形图的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

详谈python http长连接客户端

背景: 线上机器,需要过滤access日志,发送给另外一个api 期初是单进程,效率太低,改为多进程发送后,查看日志中偶尔会出现异常错误(忘记截图了。。。) 总之就是端口不够用了报错 原...

详解python单例模式与metaclass

单例模式的实现方式 将类实例绑定到类变量上 class Singleton(object): _instance = None def __new__(cls, *args...

Python操作MongoDB数据库PyMongo库使用方法

引用PyMongo 复制代码 代码如下: >>> import pymongo 创建连接Connection 复制代码 代码如下: >>> impo...

详解python调用cmd命令三种方法

目前我使用到的python中执行cmd的方式有三种 使用os.system("cmd")     该方法在调用完shell脚本后,返回一个16位的二进制数...

解决PyCharm同目录下导入模块会报错的问题

在PyCharm2017中同目录下import其他模块,会出现No model named ...的报错,但实际可以运行 这是因为PyCharm不会将当前文件目录自动加入source_p...