python+opencv轮廓检测代码解析

yipeiwu_com6年前Python基础

首先大家可以对OpenCV有个初步的了解,可以参考:简单了解OpenCV

轮廓(Contours),指的是有相同颜色或者密度,连接所有连续点的一条曲线。检测轮廓的工作对形状分析和物体检测与识别都非常有用。

在轮廓检测之前,首先要对图片进行二值化或者Canny边缘检测。在OpenCV中,寻找的物体是白色的,而背景必须是黑色的,因此图片预处理时必须保证这一点。

import cv2 
 
#读入图片 
img = cv2.imread("1.png") 
 
# 必须先转化成灰度图 
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
 
# 二值化 
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINAEY) 
 
# 寻找轮廓 
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) 
 
# 画出轮廓,-1,表示所有轮廓,画笔颜色为(0, 255, 0),即Green,粗细为3 
cv2.drawContours(img, contours, -1, (0, 255, 0), 3) 
 
# 显示图片 
cv2.namedWindow("Contours", cv2.NORMAL_WINDOW) 
cv2.imshow("Contours", img) 
 
# 等待键盘输入 
cv2.waitKey(0) 
cv2.destroyAllWindows() 

总结

本文实例涉及对图片的一些简单处理,比如图片的读取,灰度显示,二值化等,大家可以参考。

以上就是本文关于python+opencv轮廓检测代码解析的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

OpenCV-Python实现轮廓检测实例分析

python+opencv实现的简单人脸识别代码示例

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

Python插入Elasticsearch操作方法解析

这篇文章主要介绍了Python插入Elasticsearch操作方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在用scrap...

python多线程并发及测试框架案例

这篇文章主要介绍了python多线程并发及测试框架案例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1、循环创建多个线程,并通过循环...

Python实时获取cmd的输出

最近发现一个问题,一个小伙儿写的console程序不够健壮,监听SOCKET的时候容易崩,造成程序的整体奔溃,无奈他没有找到问题的解决办法,一直解决不了,可是这又是一个监控程序,还是比较...

Python类中的魔法方法之 __slots__原理解析

在类中每次实例化一个对象都会生产一个字典来保存一个对象的所有的实例属性,这样非常的有用处,可以使我们任意的去设置新的属性。 每次实例化一个对象python都会分配一个固定大小内存的字典来...

Python 字符串转换为整形和浮点类型的方法

Python2.6 之前:字符串转换为整形和浮点型 >>>import string >>>string.atoi('34.1') 34 &...