Python通过OpenCV的findContours获取轮廓并切割实例

yipeiwu_com5年前Python基础

1 获取轮廓

OpenCV2获取轮廓主要是用cv2.findContours

import numpy as np
import cv2

im = cv2.imread('test.jpg')
imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(imgray,127,255,0)
image, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

其中,findContours的第二个函数很重要,主要分为 cv2.RETR_LIST, cv2.RETR_TREE, cv2.RETR_CCOMP, cv2.RETR_EXTERNAL,具体含义可参考官方文档

2 画出轮廓

为了看到自己画了哪些轮廓,可以使用 cv2.boundingRect()函数获取轮廓的范围,即左上角原点,以及他的高和宽。然后用cv2.rectangle()方法画出矩形轮廓

for i in range(0,len(contours)): 
  x, y, w, h = cv2.boundingRect(contours[i])  
  cv2.rectangle(image, (x,y), (x+w,y+h), (153,153,0), 5) 

3切割轮廓

轮廓的切割主要是通过数组切片实现的,不过这里有一个小技巧:就是图片切割的w,h是宽和高,而数组讲的是行(row)和列(column)

所以,在切割图片时,数组的高和宽是反过来写的

  newimage=image[y+2:y+h-2,x+2:x+w-2] # 先用y确定高,再用x确定宽
      nrootdir=("E:/cut_image/")
      if not os.path.isdir(nrootdir):
        os.makedirs(nrootdir)
      cv2.imwrite( nrootdir+str(i)+".jpg",newimage) 
      print (i)

这样就可以把确定的轮廓都切割出来了。

总结

以上就是本文关于Python通过OpenCV的findContours获取轮廓并切割实例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

python+opencv轮廓检测代码解析

OpenCV-Python实现轮廓检测实例分析

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

Python中文件的读取和写入操作

从文件中读取数据 读取整个文件 这里假设在当前目录下有一个文件名为'pi_digits.txt'的文本文件,里面的数据如下: 3.1415926535 8979323846 2643...

Python3实现转换Image图片格式

前言 首先图片格式转换的方法有很多,但是转二进制字节流的,我搜了一下午终于在 stackoverflow上搜到了 说一下为什么要在线转这个图片格式 额,一名Python3 spid...

Django 多环境配置详解

本文也是开发项目中的一个小经验Tip,虽然很简单,但对很多朋友也有小帮助。 我们实际工程中,可能遇到开发环境、预上线环境、线上环境等环境场景,应用配置因此可能有所不同。 我的经验是利用环...

Python实现的概率分布运算操作示例

本文实例讲述了Python实现的概率分布运算操作。分享给大家供大家参考,具体如下: 1. 二项分布(离散) import numpy as np from scipy import...

python输入整条数据分割存入数组的方法

通过手动输入数据,将数据分成几部分存入数组中 import os import sys def test(): brick = raw_input("input:")...