Python+matplotlib实现计算两个信号的交叉谱密度实例

yipeiwu_com6年前Python基础

 计算两个信号的交叉谱密度

结果展示:

完整代码:

import numpy as np
import matplotlib.pyplot as plt


fig, (ax1, ax2) = plt.subplots(2, 1)
# make a little extra space between the subplots
fig.subplots_adjust(hspace=0.5)

dt = 0.01
t = np.arange(0, 30, dt)

# Fixing random state for reproducibility
np.random.seed(19680801)


nse1 = np.random.randn(len(t))         # white noise 1
nse2 = np.random.randn(len(t))         # white noise 2
r = np.exp(-t / 0.05)

cnse1 = np.convolve(nse1, r, mode='same') * dt  # colored noise 1
cnse2 = np.convolve(nse2, r, mode='same') * dt  # colored noise 2

# two signals with a coherent part and a random part
s1 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse1
s2 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse2

ax1.plot(t, s1, t, s2)
ax1.set_xlim(0, 5)
ax1.set_xlabel('time')
ax1.set_ylabel('s1 and s2')
ax1.grid(True)

cxy, f = ax2.csd(s1, s2, 256, 1. / dt)
ax2.set_ylabel('CSD (db)')
plt.show()

总结

以上就是本文关于Python+matplotlib实现计算两个信号的交叉谱密度实例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

深入浅析Python2.x和3.x版本的主要区别

版本说明 Python 3.0在设计的时候没有考虑向较早版本相容 Python 2.6作为一个过渡版本,基本使用了Python 2.x的语法和库,同时考虑了向Python 3.0的迁移,...

使用python3+xlrd解析Excel的实例

实例如下所示: # -*- coding: utf-8 -*- import xlrd def open_excel(file = 'file.xls'):#打开要解析的Excel文...

windows环境下tensorflow安装过程详解

windows环境下tensorflow安装过程详解

一、前言 本次安装tensorflow是基于Python的,安装Python的过程不做说明(既然决定按,Python肯定要先了解啊):本次教程是windows下Anaconda安装Ten...

python装饰器代替set get方法实例

对于变量的访问和设置,我们可以使用get、set方法,如下: class student: def __init__(self,name): self.__name =...

Python通过DOM和SAX方式解析XML的应用实例分享

XML.DOM 需求 有一个表,里面数据量比较大,每天一更新,其字段可以通过xml配置文件进行配置,即,可能每次建表的字段不一样。 上游跑时会根据配置从源文件中提取,到入库这一步需要根据...