Python+matplotlib实现计算两个信号的交叉谱密度实例

yipeiwu_com6年前Python基础

 计算两个信号的交叉谱密度

结果展示:

完整代码:

import numpy as np
import matplotlib.pyplot as plt


fig, (ax1, ax2) = plt.subplots(2, 1)
# make a little extra space between the subplots
fig.subplots_adjust(hspace=0.5)

dt = 0.01
t = np.arange(0, 30, dt)

# Fixing random state for reproducibility
np.random.seed(19680801)


nse1 = np.random.randn(len(t))         # white noise 1
nse2 = np.random.randn(len(t))         # white noise 2
r = np.exp(-t / 0.05)

cnse1 = np.convolve(nse1, r, mode='same') * dt  # colored noise 1
cnse2 = np.convolve(nse2, r, mode='same') * dt  # colored noise 2

# two signals with a coherent part and a random part
s1 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse1
s2 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse2

ax1.plot(t, s1, t, s2)
ax1.set_xlim(0, 5)
ax1.set_xlabel('time')
ax1.set_ylabel('s1 and s2')
ax1.grid(True)

cxy, f = ax2.csd(s1, s2, 256, 1. / dt)
ax2.set_ylabel('CSD (db)')
plt.show()

总结

以上就是本文关于Python+matplotlib实现计算两个信号的交叉谱密度实例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

Saltstack快速入门简单汇总

saltstack是使用python编写的开源自动化部署与管理工具,拥有良好的扩展性以及优秀的执行效率,配置简单,可以工作在多平台上,经常被描述为 Func加强版+Puppet精简版。...

python操作ie登陆土豆网的方法

本文实例讲述了python操作ie登陆土豆网的方法。分享给大家供大家参考。具体如下: 这里利用ie操作登陆土豆网,很简单,仅做一下记录,以备后用。 # -*- coding: utf...

深入理解python中sort()与sorted()的区别

Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列 一,最简单的排序 1.使用sort排序 my_...

Python函数和模块的使用总结

函数和模块的使用 在讲解本章节的内容之前,我们先来研究一道数学题,请说出下面的方程有多少组正整数解。 $$x_1 + x_2 + x_3 + x_4 = 8$$ 事实上,上面的问题等同...

python kafka 多线程消费者&手动提交实例

官方文档:https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html import threadi...