Python+matplotlib实现计算两个信号的交叉谱密度实例

yipeiwu_com6年前Python基础

 计算两个信号的交叉谱密度

结果展示:

完整代码:

import numpy as np
import matplotlib.pyplot as plt


fig, (ax1, ax2) = plt.subplots(2, 1)
# make a little extra space between the subplots
fig.subplots_adjust(hspace=0.5)

dt = 0.01
t = np.arange(0, 30, dt)

# Fixing random state for reproducibility
np.random.seed(19680801)


nse1 = np.random.randn(len(t))         # white noise 1
nse2 = np.random.randn(len(t))         # white noise 2
r = np.exp(-t / 0.05)

cnse1 = np.convolve(nse1, r, mode='same') * dt  # colored noise 1
cnse2 = np.convolve(nse2, r, mode='same') * dt  # colored noise 2

# two signals with a coherent part and a random part
s1 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse1
s2 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse2

ax1.plot(t, s1, t, s2)
ax1.set_xlim(0, 5)
ax1.set_xlabel('time')
ax1.set_ylabel('s1 and s2')
ax1.grid(True)

cxy, f = ax2.csd(s1, s2, 256, 1. / dt)
ax2.set_ylabel('CSD (db)')
plt.show()

总结

以上就是本文关于Python+matplotlib实现计算两个信号的交叉谱密度实例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

Python中的yield浅析

在介绍yield前有必要先说明下Python中的迭代器(iterator)和生成器(constructor)。 一、迭代器(iterator) 在Python中,for循环可以用于Pyt...

Python实现的简单读写csv文件操作示例

Python实现的简单读写csv文件操作示例

本文实例讲述了Python实现的简单读写csv文件操作。分享给大家供大家参考,具体如下: python中有一个读写csv文件的包,直接import csv即可 新建test.csv 1....

python实现的登录和操作开心网脚本分享

SNS什么的我是一直无爱的,这次蛋疼写了个登录开心网(kaixin001)并向所有好友发送站内消息的脚本。 开心网在登录的时候做了一些处理,并不传原始密码,从js分析到的结果是:登录时会...

python中list循环语句用法实例

本文实例讲述了python中list循环语句用法。分享给大家供大家参考。具体用法分析如下: Python 的强大特性之一就是其对 list 的解析,它提供一种紧凑的方法,可以通过对 li...

Python入门必须知道的11个知识点

Python被誉为全世界高效的编程语言,同时也被称作是“胶水语言”,那它为何能如此受欢迎,下面我们就来说说Python入门学习的必备11个知识点,也就是它为何能够如此受欢迎的原因. Py...