详解Python自建logging模块

yipeiwu_com5年前Python基础

简单使用

最开始,我们用最短的代码体验一下logging的基本功能。

import logging
logger = logging.getLogger()
logging.basicConfig()
logger.setLevel('DEBUG')
logger.debug('logsomething')
#输出
out>>DEBG:root:logsomething

第一步,通过logging.getLogger函数,获取一个loger对象,但这个对象暂时是无法使用的。
第二步,logging.basicConfig函数,进行一系列默认的配置,包括format、handler等。
第三步,logger调用setLevel函数定义日志级别为DEBUG 最后,调用debug函数,输出一条debug级别的message,显示在了标准输出上。 logging中的日志级别

logging在生成日志的时候,有一个日志级别的机制,默认有以下几个日志级别:

CRITICAL = 50
ERROR = 40
WARNING = 30
INFO 20
DEBUG = 10
NOTEST = 0

每一个logger对象,都有一个日志级别,它只会输出高于它level的日志。如果一个logger的level是INFO,那么调用logger.debug()是无法输出日志的,而logger.warning()能够输出。

一般来说,以上的6个日志级别完全满足我们日常使用了。

logging中的基础类

logging是python的一个基础模块,它在python中的源码位置如下:

#主干代码
/usr/lib/python2.7/logging/__init__.py
#扩展的handler和config
/usr/lib/pyhon2.7/logging/config.py
/usr/lib/python2.7/loging/handlers.py

组成logging的主干的几个基础类都在__init__.py中:

第一个基础类LogRecord

一个LogRecord对象,对应了日志中的一行数据。通常包含:时间、日志级别、message信息、当前执行的模块、行号、函数名...这些信息都包含在一个LogRecord对象里。
LogRecord对象可以想象成一个大字典:

class LogRecord(object):
 #代表一条日志的类
 def getMessage(self):
  #获取self.msg
 def markLogRecord(dict):
 #这个方法很重要,生成一个空的LogRecord,然后通过一个字典,直接更新LogReocrd中的成员变量
 rv = LogRecord(None, None, "", 0, "", (), None, None)
 rv.__dict__.update(dict)
 return rv

第二个基础类Formatter

Formatter对象是用来定义日志格式的,LogRecord保存了很多信息,但是打印日志的时候我们只需要其中几个,Formatter就提供了这样的功能,它依赖于python的一个功能:

#通过字典的方式,输出格式化字符串
print('%(name)s:%(num)d'%{'name':'my_name', 'num' : 100})
out >>>my_name:100
如果说LogRecord是后面的那个字典,那么Formatter就是前面的那个格式字符串...的抽象

重要的代码如下:

class Formatter(object):
 def __init__(self, fmt=None, datefmt = None):
  if fmt:
   self._fmt = fmt
  else:
   #默认的format
   self._fmt = "%(message)s"
 def format(self, record)
  #使用self._fmt进行格式化
  s = self._fmt %record.__dict__
  return s

第三个基础类Filter和Filterer

Filter类,功能很简单。Filter.filter()函数传入一个LogRecord对象,通过筛选返回1,否则返回0.从代码中可以看到,其实是对LogRecord.name的筛选。

Filterer类中有一个Filter对象的列表,它是一组Filter的抽象。

重要的代码如下:

class Filter(object):
 def __init__(self, name=''):
  self.name = name
  self.nlen = len(name)
 def filter(self, record):
  #返回1表示record通过,0表示record不通过
  if self.nlen == 0:
   return 1
  elif self.name == record.name:
   return 1
  #record.name不是以filter开头
  elif record.name.find(self.name, 0, self.nlen) != 0:
   return 0
  #最后一位是否为
  return (record.name[self.nlen] == '.')
class Filterer(object):
 #这个类其实是定义了一个self.filters = []的列表管理多个filter
 def addFilter(self, filter):
 def removefilter(self, filter):
 def filter(self, record):
 #使用列表中所有的filter进行筛选,任何一个失败都会返回0
 #例如:
  #filter.name = 'A', filter2.name='A.B', filter2.name = 'A, B, C'
  #此时record.name = 'A,B,C,D'这样的record才能通过所有filter的筛选

logging中的高级类

有了以上三个基础的类,就可以拼凑一些更重要的高级类了,高级类可以实现logging的重要功能。

Handler——抽象了log的输出过程 Handler类继承自Filterer。Handler类时log输出这个过程的抽象。
同时Handler类具有一个成员变量self.level,在第二节讨论的日志级别的机制,就是在Handler中实现的。
Handler有一个emit(record)函数,这个函数负责输出log,必须在Handler的子类中实现。

重要代码如下:

class Handler(Filterer):
 def __init__(self, level = NOTEST)
  #handler必须有level属性
  self.level = _checkLevel(level)
 def format(self, record):
  #使用self.formatter, formattercord
 def handler(self, record):
  #如果通过filter的筛选,则emit这条log
  rv = self.filter(record)
  self.emit(record)
 def emit(self, record):
  #等待子类去实现

接下来看两个简单的handler的子类,其中在logging源码中,有一个handler.py专门定义了很多复杂的handler,有的可以将log缓存在内存中,有的可以将log做rotation等。

StreamHandler
最简单的handler实现,将log写入一个流,默认的stream是sys.stderr

重要的代码如下:

class StreamHandler(Handler):
 def __init__(self, stream = None):
  if stream is None:
   stream = sys.stderr
  self.stream = stream
 def emit(self, record):
  #将record的信息写入流
  #处理一些编码的异常
  fs = '%s\n' #每条日志都有换行
  stream = self.stream
  stream.write(fs%msg)

FileHandler

将log输出到文件的handler,继承StreamHandler

重要代码如下:

class FileHandler(StreamHandler):
 def __init__(self, filename, mode='a')
  #append方式打开一个文件
  StreamHandler.__init__(self, self._open())
 def emit(self, record):
  #和streamhandler保持一致
  StreamHandler.emit(self, record)

Logger——一个独立的log管道

什么是logger?

+ logger类继承自Filterer,

+ logger对象有logger.level日志级别

+ logger对象控制多个handler:logger.handlers = []

+ logger对象之间存在福字关系

简单的来说,logger这个类,集中了我们以上所有的LogRecord、Filter类、Formatter类、handler类。首先,logger根据输入生成一个LogRecord读写,经过Filter和Formatter之后,再通过self.handlers列表中的所有handler,把log发送出去。

一个logger中可能有多个handler,可以实现把一份log放到任意的位置。

class Logger(Filterer):
 def __init__(self, name, level=NOTEST)
  #handler列表
  self.handlers = []
  self.level = _checklevel(level)
 def addHandler(self, hdlr):
 def removeHandler(self, hdlr):
 def _log(self, level, msg, args, exc_info=None, extra=None):
  #在_log函数中创建了一个LogRecord对象
  record = self.makeRecord(self.name, level, fn, lno, msg, args, exc_info, func, extra)
  #交给handle函数
  self.handle(record)
 def handle(self, reord):
  #进行filter,然后调用callHandlers
  if(not self.disabled) and self.filter(record):
   self.callHandlers(record)
 def callHandlers(self, record):
  #从当前logger到所有的父logger,递归的handl传入的record
  c = self
  while c:
   for hdlr in c.handlers:
    hdlr.handle(record) #进入handler的emit函数发送log
   ....
   c = c.parent

LoggerAdapter——对标准logger的一个扩展

LogRecord这个大字典中提供的成员变量已经很多,但是,如果在输出log时候仍然希望能够夹带一些自己想要看到的更多信息,例如产生这个log的时候,调用某些函数去获得其他信息,那么就可以把这些添加到Logger中,LoggerAdapter这个类就起到这个作用。

LoggerAdapter这个类很有意思,如果不做什么改动,那么LoggerAdapter类和Logger并没有什么区别。LoggerAdapter只是对Logger类进行了一下包装。

LoggerAdapter的用法其实是在它的成员函数process()的注释中已经说明了:

def process(self, msg, kwargs):
 '''
 Normally,you'll only need to overwrite this one method in a LoggerAdapter subclass for your specific needs.
 '''

也就是说重写process函数,以下是一个例子:

import logging
import random
L=logging.getLogger('name')
#定义一个函数,生成0~1000的随机数
def func():
 return random.randint(1,1000)
class myLogger(logging.LoggerAdapter):
 #继承LoggerAdapter,重写process,生成随机数添加到msg前面
 def process(self,msg,kwargs):
  return '(%d),%s' % (self.extra['name'](),msg) ,kwargs
#函数对象放入字典中传入 
LA=myLogger(L,{'name':func})
#now,do some logging
LA.debug('some_loging_messsage')
out>>DEBUG:name:(167),some_loging_messsage

相关文章

python中Genarator函数用法分析

本文实例讲述了python中Genarator函数用法。分享给大家供大家参考。具体如下: Generator函数的定义与普通函数的定义没有什么区别,只是在函数体内使用yield生成数据项...

详解python中init方法和随机数方法

1、__init__方法的使用 2、random方法的使用 在python中,有一些方法是特殊的,是以两个下划线开始,两个下划线结束,定义类,最常用的方法就是__init__()方法,这...

python中eval与int的区别浅析

python中eval和int的区别是什么?下面给大家介绍一下: 1.eval()函数 eval(<字符串>)能够以Python表达式的方式解析并执行字符串,并将返回结果输出...

Python使用PIL模块生成随机验证码

Python生成随机验证码,需要使用PIL模块,具体内容如下 安装: pip3 install pillow 基本使用 1. 创建图片 from PIL import Ima...

Python 列表(List) 的三种遍历方法实例 详解

Python 列表(List) 的三种遍历方法实例 详解

Python 遍历 最近学习python这门语言,感觉到其对自己的工作效率有很大的提升,下面废话不多说,直接贴代码 #!/usr/bin/env python # -*- codin...