Python使用遗传算法解决最大流问题

yipeiwu_com5年前Python基础

本文为大家分享了Python遗传算法解决最大流问题,供大家参考,具体内容如下

Generate_matrix

def Generate_matrix(x,y):
 import numpy as np
 import random
 return np.ceil(np.array([random.random()*10 for i in range(x*y)]).reshape(x,y))

Max_road

def Max_road(A,degree,start):

 import random
 import numpy as np
 import copy

 def change(M,number,start): # number 控制变异程度 start 控制变异量 
  x , y = M.shape
  for i in range(start,x):
   Line = zip(range(len(M[i])),M[i])
   index_0 = [t[0] for t in Line if t[1]==0] # 获取 0 所对应的下标    
   index_1 = [t[0] for t in Line if t[1]==1] # 获取 1 所对应的下标
   M[i][random.sample(index_0,number)[0]]=1 # 随机改变序列中 number 个值 0->1
   M[i][random.sample(index_1,number)[0]]=0 # 随机改变序列中 number 个值 1->0
  return M

 x,y = A.shape

 n=x
 generation = y

 #初始化一个有 n 中情况的解决方案矩阵
 init_solve = np.zeros([n,x+y-2]) 
 init=[1]*(x-1)+[0]*(y-1)
 for i in range(n) :
  random.shuffle(init)
  init_solve[i,:] = init # 1 表示向下走 0 表示向右走 
 solve = copy.copy(init_solve)

 for loop in range(generation):
  Sum = [A[0,0]]*n # 用于记录每一种方案的总流量
  for i in range(n):
   j=0;k=0;
   for m in solve[i,:]:
    if m==1:
     k=k+1
    else:
     j=j+1   
    Sum[i] = Sum[i] + A[k,j]

  Sum_index = zip(range(len(Sum)),Sum)
  sort_sum_index = sorted(Sum_index,key = lambda d : d[1] , reverse =True) # 将 方案 按照流量总和排序

  Max = sort_sum_index[0][1] # 最大流量
  #print Max
  solve_index_half = [a[0] for a in sort_sum_index[:n/2]] # 保留排序后方案的一半
  solve = np.concatenate([solve[solve_index_half],solve[solve_index_half]]) # 将保留的一半方案 进行复制 ,复制部分用于变异
  change(solve,int((x+y-2)*degree)+1 ,start) # 变异

 return solve[0] , Max

Draw_road

def Draw_road(road,A):

 import pylab as plt
 import seaborn
 seaborn.set()

 x , y =A.shape 

 # 将下移和右移映射到绘图坐标上
 Road = [(1,x)] # 初始坐标
 j=1;k=x;
 for m in road:
  if m==1:
   k=k-1
  else:
   j=j+1
  Road.append((j,k))

 # print Road

 for i in range(len(road)):  
  plt.plot([Road[i][0],Road[i+1][0]],[Road[i][1],Road[i+1][1]])

实际运行的例子

In [119]: A = Generate_matrix(4,6)

In [120]: A
Out[120]: 
array([[ 10., 1., 7., 10., 8., 8.],
  [ 4., 8., 8., 4., 8., 2.],
  [ 9., 8., 8., 3., 9., 8.],
  [ 7., 2., 5., 9., 3., 8.]])

In [121]: road , M=Max_road(A,0.1,2)

In [122]: Draw_road(road,A)

较大规模的情况

In [105]: A = Generate_matrix(40,60)

In [106]: road , M=Max_road(A,0.1,4)

In [107]: road
Out[107]: 
array([ 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
  1., 0., 0., 0., 1., 0., 0., 1., 0., 1., 1., 1., 1.,
  1., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0.,
  1., 0., 0., 0., 1., 0., 1., 0., 0., 1., 0., 0., 1.,
  0., 0., 0., 1., 0., 0., 1., 1., 1., 1., 0., 0., 0.,
  0., 0., 0., 1., 0., 1., 1., 1., 1., 0., 1., 0., 1.,
  1., 1., 0., 1., 0., 1., 0., 1., 0., 1., 0., 0., 1.,
  0., 1., 0., 0., 1., 0., 1.])

In [108]: Draw_road(road,A)

In [109]: A = generate_Matrix(100,200)
In [110]: road , M=Max_road(A,0.1,10)
In [111]: draw_road(road,A)


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch 彩色图像转灰度图像实例

pytorch 库 pytorch 本身具有载入cifar10等数据集的函数,但是载入的是3*200*200的张量,当碰到要使用灰度图像时,可以使用他本身的函数进行修改,以较快速的完成彩...

Python中捕获键盘的方式详解

python中捕获键盘操作一共有两种方法 第一种方法: 使用pygame中event方法 使用方式如下:使用键盘右键为例 if event.type = pygame.KEYDOWN...

高质量Python代码编写的5个优化技巧

如今我使用 Python 已经很长时间了,但当我回顾之前写的一些代码时,有时候会感到很沮丧。例如,最早使用 Python 时,我写了一个名为 Sudoku 的游戏(GitHub地址:ht...

python基础教程项目五之虚拟茶话会

python基础教程项目五之虚拟茶话会

几乎在学习、使用任何一种编程语言的时候,关于socket的练习从来都不会少,尤其是会写一些局域网的通信的东西。所以书上的这个项目刚好可以练习一下socket编程。 这个练习的整体思路首先...

Python3控制路由器——使用requests重启极路由.py

通过本文给大家介绍Python3控制路由器——使用requests重启极路由.py的相关知识,代码写了相应的注释,以后再写成可以方便调用的模块。 用fiddler抓包可以看到很多HTTP...