TensorFLow用Saver保存和恢复变量

yipeiwu_com5年前Python基础

本文为大家分享了TensorFLow用Saver保存和恢复变量的具体代码,供大家参考,具体内容如下

建立文件tensor_save.py, 保存变量v1,v2的tensor到checkpoint files中,名称分别设置为v3,v4。

import tensorflow as tf

# Create some variables.
v1 = tf.Variable(3, name="v1")
v2 = tf.Variable(4, name="v2")

# Create model
y=tf.add(v1,v2)

# Add an op to initialize the variables.
init_op = tf.initialize_all_variables()

# Add ops to save and restore all the variables.
saver = tf.train.Saver({'v3':v1,'v4':v2})

# Later, launch the model, initialize the variables, do some work, save the
# variables to disk.
with tf.Session() as sess:
 sess.run(init_op)
 print("v1 = ", v1.eval())
 print("v2 = ", v2.eval())
 # Save the variables to disk.
 save_path = saver.save(sess, "f:/tmp/model.ckpt")
 print ("Model saved in file: ", save_path)

建立文件tensor_restror.py, 将checkpoint files中名称分别为v3,v4的tensor分别恢复到变量v3,v4中。

import tensorflow as tf

# Create some variables.
v3 = tf.Variable(0, name="v3")
v4 = tf.Variable(0, name="v4")

# Create model
y=tf.mul(v3,v4)

# Add ops to save and restore all the variables.
saver = tf.train.Saver()

# Later, launch the model, use the saver to restore variables from disk, and
# do some work with the model.
with tf.Session() as sess:
 # Restore variables from disk.
 saver.restore(sess, "f:/tmp/model.ckpt")
 print ("Model restored.")
 print ("v3 = ", v3.eval())
 print ("v4 = ", v4.eval())
 print ("y = ",sess.run(y))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

用python登录Dr.com思路以及代码分享

前提:isp得支持web登录的方式。 说明:每个ISP的登录页面不一样,不过我估计算法都是一样的,于是解决方案应该也是相似的,只是表单的key可能不太一样。 首先,分析登录页面。 页面h...

python实现批量监控网站

最近又新上了一部分站点,随着站点的增多,管理复杂性也上来了,俗话说:人多了不好带,我发现站点多了也不好管,因为这些站点里有重要的也有不重要的,重要核心的站点当然就管理的多一些,像一些万年...

Python自动化完成tb喵币任务的操作方法

Python自动化完成tb喵币任务的操作方法

2019双十一,tb推出了新的活动,商店喵币,看了一下每天都有几个任务来领取喵币,从而升级店铺赚钱,然而我既想赚红包又不想干苦力,遂使用python来进行手机自动化操作,目测全网首发!...

JPype实现在python中调用JAVA的实例

一、JPype简述 1.JPype是什么? JPype是一个能够让 python 代码方便地调用 Java 代码的工具,从而克服了 python 在某些领域(如服务器端编程)中的不足。...

Python多进程分块读取超大文件的方法

本文实例讲述了Python多进程分块读取超大文件的方法。分享给大家供大家参考,具体如下: 读取超大的文本文件,使用多进程分块读取,将每一块单独输出成文件 # -*- coding:...