python实现简单神经网络算法

yipeiwu_com5年前Python基础

python实现简单神经网络算法,供大家参考,具体内容如下

python实现二层神经网络

包括输入层和输出层

import numpy as np 
 
#sigmoid function 
def nonlin(x, deriv = False): 
  if(deriv == True): 
    return x*(1-x) 
  return 1/(1+np.exp(-x)) 
 
#input dataset 
x = np.array([[0,0,1], 
       [0,1,1], 
       [1,0,1], 
       [1,1,1]]) 
 
#output dataset 
y = np.array([[0,0,1,1]]).T 
 
np.random.seed(1) 
 
#init weight value 
syn0 = 2*np.random.random((3,1))-1 
 
for iter in xrange(100000): 
  l0 = x             #the first layer,and the input layer  
  l1 = nonlin(np.dot(l0,syn0))  #the second layer,and the output layer 
 
 
  l1_error = y-l1 
 
  l1_delta = l1_error*nonlin(l1,True) 
 
  syn0 += np.dot(l0.T, l1_delta) 
print "outout after Training:" 
print l1 
import numpy as np 
 
#sigmoid function 
def nonlin(x, deriv = False): 
  if(deriv == True): 
    return x*(1-x) 
  return 1/(1+np.exp(-x)) 
 
#input dataset 
x = np.array([[0,0,1], 
       [0,1,1], 
       [1,0,1], 
       [1,1,1]]) 
 
#output dataset 
y = np.array([[0,0,1,1]]).T 
 
np.random.seed(1) 
 
#init weight value 
syn0 = 2*np.random.random((3,1))-1 
 
for iter in xrange(100000): 
  l0 = x             #the first layer,and the input layer  
  l1 = nonlin(np.dot(l0,syn0))  #the second layer,and the output layer 
 
 
  l1_error = y-l1 
 
  l1_delta = l1_error*nonlin(l1,True) 
 
  syn0 += np.dot(l0.T, l1_delta) 
print "outout after Training:" 
print l1 

这里,
l0:输入层

l1:输出层

syn0:初始权值

l1_error:误差

l1_delta:误差校正系数

func nonlin:sigmoid函数

可见迭代次数越多,预测结果越接近理想值,当时耗时也越长。

python实现三层神经网络

包括输入层、隐含层和输出层

import numpy as np 
 
def nonlin(x, deriv = False): 
  if(deriv == True): 
    return x*(1-x) 
  else: 
    return 1/(1+np.exp(-x)) 
 
#input dataset 
X = np.array([[0,0,1], 
       [0,1,1], 
       [1,0,1], 
       [1,1,1]]) 
 
#output dataset 
y = np.array([[0,1,1,0]]).T 
 
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value 
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value 
 
for j in range(60000): 
  l0 = X            #the first layer,and the input layer  
  l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer 
  l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer 
 
 
  l2_error = y-l2    #the hidden-output layer error 
 
  if(j%10000) == 0: 
    print "Error:"+str(np.mean(l2_error)) 
 
  l2_delta = l2_error*nonlin(l2,deriv = True) 
 
  l1_error = l2_delta.dot(syn1.T)   #the first-hidden layer error 
 
  l1_delta = l1_error*nonlin(l1,deriv = True) 
 
  syn1 += l1.T.dot(l2_delta) 
  syn0 += l0.T.dot(l1_delta) 
print "outout after Training:" 
print l2 
import numpy as np 
 
def nonlin(x, deriv = False): 
  if(deriv == True): 
    return x*(1-x) 
  else: 
    return 1/(1+np.exp(-x)) 
 
#input dataset 
X = np.array([[0,0,1], 
       [0,1,1], 
       [1,0,1], 
       [1,1,1]]) 
 
#output dataset 
y = np.array([[0,1,1,0]]).T 
 
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value 
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value 
 
for j in range(60000): 
  l0 = X            #the first layer,and the input layer  
  l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer 
  l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer 
 
 
  l2_error = y-l2    #the hidden-output layer error 
 
  if(j%10000) == 0: 
    print "Error:"+str(np.mean(l2_error)) 
 
  l2_delta = l2_error*nonlin(l2,deriv = True) 
 
  l1_error = l2_delta.dot(syn1.T)   #the first-hidden layer error 
 
  l1_delta = l1_error*nonlin(l1,deriv = True) 
 
  syn1 += l1.T.dot(l2_delta) 
  syn0 += l0.T.dot(l1_delta) 
print "outout after Training:" 
print l2 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python生成器(Generator)详解

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后...

对Python 3.5拼接列表的新语法详解

在Python 3.5之前的版本,拼接列表可以有这两种方法: 1、列表相加 list1 = [1,2,3] list2 = [4,5,6] result = list1 + list...

Python QQBot库的QQ聊天机器人

Python QQBot库的QQ聊天机器人

本文实例为大家分享了Python QQBot库的QQ聊天机器人的具体代码,供大家参考,具体内容如下 项目地址:https://github.com/pandolia/qqbot 1.安装...

python中nan与inf转为特定数字方法示例

前言 最近因为工作的需求,要处理两个矩阵的点除,得到结果后,再作其他的计算,发现有些内置的函数不work;查看得到的数据,发现有很多nan和inf,导致Python的基本函数运行不了,这...

对python 矩阵转置transpose的实例讲解

在读图片时,会用到这么的一段代码: image_vector_len = np.prod(image_size)#总元素大小,3*55*47 img = Image.open(pat...