tensorflow构建BP神经网络的方法

yipeiwu_com6年前Python基础

之前的一篇博客专门介绍了神经网络的搭建,是在python环境下基于numpy搭建的,之前的numpy版两层神经网络,不能支持增加神经网络的层数。最近看了一个介绍tensorflow的视频,介绍了关于tensorflow的构建神经网络的方法,特此记录。

tensorflow的构建封装的更加完善,可以任意加入中间层,只要注意好维度即可,不过numpy版的神经网络代码经过适当地改动也可以做到这一点,这里最重要的思想就是层的模型的分离。

import tensorflow as tf  
import numpy as np  
 
def addLayer(inputData,inSize,outSize,activity_function = None): 
  Weights = tf.Variable(tf.random_normal([inSize,outSize]))  
  basis = tf.Variable(tf.zeros([1,outSize])+0.1)  
  weights_plus_b = tf.matmul(inputData,Weights)+basis 
  if activity_function is None: 
    ans = weights_plus_b 
  else: 
    ans = activity_function(weights_plus_b) 
  return ans 
 
 
x_data = np.linspace(-1,1,300)[:,np.newaxis] # 转为列向量 
noise = np.random.normal(0,0.05,x_data.shape) 
y_data = np.square(x_data)+0.5+noise 
 
 
xs = tf.placeholder(tf.float32,[None,1]) # 样本数未知,特征数为1,占位符最后要以字典形式在运行中填入 
ys = tf.placeholder(tf.float32,[None,1]) 
 
l1 = addLayer(xs,1,10,activity_function=tf.nn.relu) # relu是激励函数的一种 
l2 = addLayer(l1,10,1,activity_function=None) 
loss = tf.reduce_mean(tf.reduce_sum(tf.square((ys-l2)),reduction_indices = [1]))#需要向相加索引号,redeuc执行跨纬度操作 
 
train = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # 选择梯度下降法 
 
init = tf.initialize_all_variables() 
sess = tf.Session() 
sess.run(init) 
 
for i in range(10000): 
  sess.run(train,feed_dict={xs:x_data,ys:y_data}) 
  if i%50 == 0: 
    print sess.run(loss,feed_dict={xs:x_data,ys:y_data}) 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现简易端口扫描器代码实例

Python实现简易端口扫描器代码实例

在网上的一些资料的基础上自己又添了些新内容,算是Python socket编程练手吧。 #coding=utf-8 import socket import time import...

pycharm+PyQt5+python最新开发环境配置(踩坑)

pycharm+PyQt5+python最新开发环境配置(踩坑)

安装工具: Pycharm 专业版2017.3 PyQT5 python3 测试工程文件及所需工具: 1、首先安装Pycharm,先前一篇介绍安装破解版的可以参...

python解析json串与正则匹配对比方法

现在有如下格式的json串: “detail_time”:”2016-03-30 16:00:00”,”device_id”:”123456”,”os”:”Html5Wap”,”s...

python函数修饰符@的使用方法解析

python函数修饰符@的作用是为现有函数增加额外的功能,常用于插入日志、性能测试、事务处理等等。 创建函数修饰符的规则: (1)修饰符是一个函数 (2)修饰符取被修饰函数为参数...

对python文件读写的缓冲行为详解

文件的io操作的缓冲行为分为 全缓冲:同系统及磁盘块大小有关,n个字节后执行一次写入操作 行缓冲:遇到换行符执行一次写操作 无缓冲:立刻执行写操作 open()函数 help(ope...