Python的numpy库中将矩阵转换为列表等函数的方法

yipeiwu_com5年前Python基础

这篇文章主要介绍Python的numpy库中的一些函数,做备份,以便查找。

(1)将矩阵转换为列表的函数:numpy.matrix.tolist()

返回list列表

Examples

>>>

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],
  [ 4, 5, 6, 7],
  [ 8, 9, 10, 11]])
>>> x.tolist()
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]

(2)将数组转换为列表的函数:numpy.ndarray.tolist()

Notes:(数组能够被重新构造)

The array may be recreated, a=np.array(a.tolist()).

Examples

>>>

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

(3)numpy.mean()计算矩阵或数组的均值:

Examples

>>>

>>> a = np.array([[1, 2], [3, 4]]) #对所有元素求均值
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0) #对每一列求均值
array([ 2., 3.])
>>> np.mean(a, axis=1) #对每一行求均值
array([ 1.5, 3.5])

(4)numpy.std()计算矩阵或数组的标准差:

Examples

>>>

>>> a = np.array([[1, 2], [3, 4]]) #对所有元素求标准差 
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0) #对每一列求标准差
array([ 1., 1.])
>>> np.std(a, axis=1) #对每一行求标准差
array([ 0.5, 0.5])

(5)numpy.newaxis为数组增加一个维度:

Examples:

>>> a=np.array([[1,2,3],[4,5,6],[7,8,9]]) #先输入3行2列的数组a
>>> b=a[:,:2] 
>>> b.shape #当数组的行与列都大于1时,不需增加维度
(3, 2)
>>> c=a[:,2] 
>>> c.shape #可以看到,当数组只有一列时,缺少列的维度
(3,)
>>> c
array([3, 6, 9])
>>> d=a[:,2,np.newaxis] #np.newaxis实现增加列的维度
>>> d
array([[3],
  [6],
  [9]])
>>> d.shape  #d的维度成了3行1列(3,1)
(3, 1)
>>> e=a[:,2,None] #None与np.newaxis实现相同的功能
>>> e
array([[3],
  [6],
  [9]])
>>> e.shape
(3, 1)

(6)numpy.random.shuffle(index): 打乱数据集(数组)的顺序:

Examples:

>>> index = [i for i in range(10)] 
>>> index 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 
>>> np.random.shuffle(index) 
>>> index 
[7, 9, 3, 0, 4, 1, 5, 2, 8, 6] 

(7)计算二维数组某一行或某一列的最大值最小值:

>>> import numpy as np 
>>> a = np.arange(15).reshape(5,3) #构造一个5行3列的二维数组 
>>> a 
array([[ 0, 1, 2], 
  [ 3, 4, 5], 
  [ 6, 7, 8], 
  [ 9, 10, 11], 
  [12, 13, 14]]) 
>>> b = a[:,0].min() ##取第0列的最小值,其他列同理 
>>> b 
0 
>>> c = a[0,:].max() ##取第0行的最大值,其他行同理 
>>> c 
2 

(8)向数组中添加列:np.hstack()

n = np.array(np.random.randn(4,2)) 
 
n 
Out[153]: 
array([[ 0.17234 , -0.01480043], 
  [-0.33356669, -1.33565616], 
  [-1.11680009, 0.64230761], 
  [-0.51233174, -0.10359941]]) 
 
l = np.array([1,2,3,4]) 
 
l 
Out[155]: array([1, 2, 3, 4]) 
 
l.shape 
Out[156]: (4,) 

可以看到,n是二维的,l是一维的,如果直接调用np.hstack()会出错:维度不同。

n = np.hstack((n,l)) 
ValueError: all the input arrays must have same number of dimensions 

解决方法是将l变为二维的,可以用(5)中的方法:

n = np.hstack((n,l[:,np.newaxis])) ##注意:在使用np.hstack()时必须用()把变量括起来,因为它只接受一个变量 
 
n 
Out[161]: 
array([[ 0.17234 , -0.01480043, 1.  ], 
  [-0.33356669, -1.33565616, 2.  ], 
  [-1.11680009, 0.64230761, 3.  ], 
  [-0.51233174, -0.10359941, 4.  ]]) 

下面讲一下如何按列往一个空列表添加值:

n = np.array([[1,2,3,4,5,6],[11,22,33,44,55,66],[111,222,333,444,555,666]]) ##产生一个三行六列容易区分的数组 
 
n 
Out[166]: 
array([[ 1, 2, 3, 4, 5, 6], 
  [ 11, 22, 33, 44, 55, 66], 
  [111, 222, 333, 444, 555, 666]]) 
 
sample = [[]for i in range(3)] ##产生三行一列的空列表 
Out[172]: [[], [], []] 
for i in range(0,6,2): ##每间隔一列便添加到sample中 
 sample = np.hstack((sample,n[:,i,np.newaxis]))  
  
 
sample 
Out[170]: 
array([[ 1., 3., 5.], 
  [ 11., 33., 55.], 
  [ 111., 333., 555.]]) 

持续更新中……

以上这篇Python的numpy库中将矩阵转换为列表等函数的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Pandas之drop_duplicates:去除重复项方法

Pandas之drop_duplicates:去除重复项方法

方法 DataFrame.drop_duplicates(subset=None, keep='first', inplace=False) 参数 这个drop_duplicate...

Python学习笔记之函数的定义和作用域实例详解

本文实例讲述了Python函数的定义和作用域。分享给大家供大家参考,具体如下: 定义函数 默认参数: 可以向函数中添加默认参数,以便为在函数调用中未指定的参数提供默认值 # 如果调用...

win10安装tensorflow-gpu1.8.0详细完整步骤

win10安装tensorflow-gpu1.8.0详细完整步骤

在整个安装的过程中也遇到了很多的坑,故此做个记录,争取下次不再犯! 我的整个基本配置如下: 电脑环境如下:win10(64位)+CPU:E5-2603 +GPU:GTX 1070 需要安...

Python实现二叉树前序、中序、后序及层次遍历示例代码

前言 树是数据结构中非常重要的一种,主要的用途是用来提高查找效率,对于要重复查找的情况效果更佳,如二叉排序树、FP-树。另外可以用来提高编码效率,如哈弗曼树。 用 Python 实现树...

python使用matplotlib画柱状图、散点图

python使用matplotlib画柱状图、散点图

本文实例为大家分享了python使用matplotlib画柱状图、散点图的具体代码,供大家参考,具体内容如下 柱状图(plt.bar) 代码与注释 import numpy as n...