python:pandas合并csv文件的方法(图书数据集成)

yipeiwu_com6年前Python基础

数据集成:将不同表的数据通过主键进行连接起来,方便对数据进行整体的分析。

两张表:ReaderInformation.csv,ReaderRentRecode.csv

ReaderInformation.csv:

ReaderRentRecode.csv:

pandas读取csv文件,并进行csv文件合并处理:

# -*- coding:utf-8 -*-
import csv as csv
import numpy as np
# -------------
# csv读取表格数据
# -------------
'''
csv_file_object = csv.reader(codecs.open('ReaderRentRecode.csv', 'rb'))
header = csv_file_object.next()
print header
print type(header)
print header[1]
data = []
for row in csv_file_object:
  data.append(row)
data = np.array(data)
print data[0::, 0]
'''
# -------------
# pandas读取表格数据
# -------------
import pandas as pd
df = pd.read_csv('ReaderRentRecode.csv') # 读者借阅信息表
'''
print df.head()
print '----------------'
print df[['读者证号', '读者姓名', '书名', '中图法分类号']] # 选取其中的四列
print '------------------------------------------------------------------'
print
'''
dd = pd.read_csv('ReaderInformation.csv')
'''
print dd.head()
print '----------------'
print dd[['读者证号', '读者性别', '读者单位', '读者类别']]
print '------------------------------------------------------------------'
print
'''
data = pd.merge(df, dd, on=['读者证号', '读者姓名'], how='left') # pandas csv表左连接
data = data[['读者证号', '读者姓名', '读者性别', '书名', '中图法分类号', '读者单位', '读者类别']]
print data
print '------------------------------------------------------------------'
print
# -------------
# pandas写入表格数据
# -------------
data.to_csv(r'data.csv', encoding='gbk')

合并后的csv文件:data.csv

通过使用pandas的函数merge来进行两个表的左连接,最后得到相应的data.csv文件。

以上这篇python:pandas合并csv文件的方法(图书数据集成)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python分布式环境下的限流器的示例

项目中用到了限流,受限于一些实现方式上的东西,手撕了一个简单的服务端限流器。 服务端限流和客户端限流的区别,简单来说就是: 1)服务端限流 对接口请求进行限流,限制的是单位时间内请求的数...

总结Python编程中函数的使用要点

为何使用函数 最大化代码的重用和最小化代码冗余 流程的分解 编写函数 >>def语句 在Python中创建一个函数是通过def关键字进行的,def语句将创建一个函...

Python实现定时备份mysql数据库并把备份数据库邮件发送

一、先来看备份mysql数据库的命令 mysqldump -u root --password=root --database abcDataBase > c:/abc_bac...

python转换摩斯密码示例

复制代码 代码如下:CODE = {'A': '.-',     'B': '-...',   'C': '-.-.',&nb...

python 画出使用分类器得到的决策边界

python 画出使用分类器得到的决策边界

获取数据集,并画图代码如下: import numpy as np from sklearn.datasets import make_moons import matplotlib...