对python 矩阵转置transpose的实例讲解

yipeiwu_com6年前Python基础

在读图片时,会用到这么的一段代码:

image_vector_len = np.prod(image_size)#总元素大小,3*55*47
img = Image.open(path)
    arr_img = np.asarray(img, dtype='float64')
    arr_img = arr_img.transpose(2,0,1).reshape((image_vector_len, ))# 47行,55列,每个点有3个元素rgb。再把这些元素一字排开

transpose是什么意识呢? 看如下例子:

arr1 = array([[[ 0, 1, 2, 3],
    [ 4, 5, 6, 7]],
    [[ 8, 9, 10, 11],
    [12, 13, 14, 15]]])

这是原来的矩阵。如果对其进行转置,执行arr2 = arr1.transpose((1,0,2))

得到:

array([[[ 0, 1, 2, 3],
    [ 8, 9, 10, 11]],
    [[ 4, 5, 6, 7],
    [12, 13, 14, 15]]])

过程是怎样的?

arr1.shape 应该是(2, 2, 4) 意为 2维,2*4矩阵

arr1.transpose(*args) 里面的参数,可以这么理解,他是调换arr1.shape的顺序,咱来给arr1.shape标一下角标哈,(2[0], 2[1], 4[2]) [ ] 里是shape的索引,对吧,

transpose((1, 0, 2)) 的意思是 按照这个顺序 重新设置shape 也就是 (2[1], 2[0], 4[2])

虽然看起来 变换前后的shape都是 2,2,4 , 但是问题来了,transpose是转置

shape按照(1,0,2)的顺序重新设置了, array里的所有元素 也要按照这个规则重新组成新矩阵

比如 8 在arr1中的索引是 (1, 0, 0) 那么按照刚才的变换规则,就是 (0, 1, 0) 看看跟你结果arr2的位置一样了吧,依此类推..

另外一个知识点:

对于一维的shape,转置是不起作用的,举例:

x=linspace(0,4,5) 
#array([0.,1.,2.,3.,4.])
y=transpose(x)  # 会转置失败。

如果想正确使用的话:

x.shape=(5,1)
y=transpose(x)  #就可以了

以上这篇对python 矩阵转置transpose的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python Django批量导入数据

前言: 这期间有研究了Django网页制作过程中,如何将数据批量导入到数据库中. 这个过程真的是惨不忍睹,犯了很多的低级错误,这会在正文中说到的.再者导入数据用的是py脚本,脚本内容参考...

python-django中的APPEND_SLASH实现方法

python-django中的APPEND_SLASH实现方法

关于django中的APPEND_SLASH APPEND_SLASH 它是啥? 看变量名大概能知道做什么,就是添加斜线,用路由系统那里。 路由文件,只写了路由关系代码 .........

远程部署工具Fabric详解(支持Python3)

前言 如果你搜一圈 "Fabric "关键字,你会发现 90% 的资料都是过时的,因为现在 Fabric 支持 Python3,但是它又不兼容旧版 Fabric。所以,如果你按照那些教程...

在python中创建指定大小的多维数组方式

python中创建指定大小的二维数组,有点像C++中进行动态申请内存创建数组,不过相比较而言,python中更为简单一些。 创建n行m列的二维数组: n = 2 m = 3 ma...

python单例设计模式实现解析

python单例设计模式实现解析

这篇文章主要介绍了python单例设计模式实现解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 所谓单例,就是让类创建对象的时候,在...