Python中跳台阶、变态跳台阶与矩形覆盖问题的解决方法

yipeiwu_com5年前Python基础

前言

跳台阶、变态跳台阶、矩形覆盖其实都和斐波那契数列是一类问题,文中通过示例代码介绍的非常详细,下面话不多说了,来一起看看详细的介绍吧。

跳台阶

问题描述:

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

分析:

初始值很容易得到,当n > 2时,跳上n级台阶最后一步无外乎两种情况,从第n-1级跳一级跳上来,或是从第n-2级跳2级跳上来,因此很容易得到如下递归公式。

F(0)= 0
F(1)= 1
F(2)= 2
F(n)= F(n-1)+ F(n-2)(n > 2)

代码:

def jump_floor(number):
 if number <= 2:
  return number
 prev, curr = 1, 2
 for _ in range(3, number+1):
  prev, curr = curr, prev+curr
 return curr

变态跳台阶

问题描述:

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

分析:

相比上一个跳台阶,这次可以从任意台阶跳上第n级台阶,也可以直接跳上第n级。因此其递归公式为各个台阶之和再加上直接跳上去的一种情况。

F(0)= 0
F(1)= 1
F(2)= 2
F(n)= F(n-1)+ F(n-2)+ … + F(2)+ F(1)+ 1 = 2 **(n-1)

代码:

def jump_floor(number):
 if number == 0:
  return 0
 return 2**(number-1)

矩形覆盖

问题描述:

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

分析:

仔细分析这个问题实际上就是普通的跳台阶问题。

F(0)= 0
F(1)= 1
F(2)= 2
F(n)= F(n-1)+ F(n-2)(n > 2)

代码:

def jump_floor(number):
 if number <= 2:
  return number
 prev, curr = 1, 2
 for _ in range(3, number+1):
  prev, curr = curr, prev+curr
 return curr

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对【听图阁-专注于Python设计】的支持。

相关文章

Python基于tkinter模块实现的改名小工具示例

本文实例讲述了Python基于tkinter模块实现的改名小工具。分享给大家供大家参考,具体如下: #!/usr/bin/env python #coding=utf-8 # #...

详解python中asyncio模块

一直对asyncio这个库比较感兴趣,毕竟这是官网也非常推荐的一个实现高并发的一个模块,python也是在python 3.4中引入了协程的概念。也通过这次整理更加深刻理解这个模块的使用...

使用TensorFlow对图像进行随机旋转的实现示例

使用TensorFlow对图像进行随机旋转的实现示例

在使用深度学习对图像进行训练时,对图像进行随机旋转有助于提升模型泛化能力。然而之前在做旋转等预处理工作时,都是先对图像进行旋转后保存到本地,然后再输入模型进行训练,这样的过程会增加工作量...

python自动发送邮件脚本

本文实例为大家分享了python自动发送邮件的具体代码,供大家参考,具体内容如下 #coding=utf8 ''''' 该模块使自动发送邮件的模块 模块初始化时需要设置:...

pandas DataFrame索引行列的实现

python版本: 3.6 pandas版本: 0.23.4 行索引 索引行有三种方法,分别是 loc iloc ix import pandas as pd impo...