基于python3 OpenCV3实现静态图片人脸识别

yipeiwu_com6年前Python基础

本文采用OpenCV3和Python3 来实现静态图片的人脸识别,采用的是Haar文件级联。

首先需要将OpenCV3源代码中找到data文件夹下面的haarcascades文件夹里面包含了所有的OpenCV的人脸检测的XML文件,这些文件可以用于检测静态,视频文件,摄像头视频流中的人脸,找到haarcascades文件夹后,复制里面的XML文件,在你新建的Python脚本文件目录里面建一个名为cascades的文件夹,并把复制的XML文件粘贴到新建的文件夹中一些有人脸的的图片,这个大家可以自行百度。

创建一个识别人脸的函数detect()

def detect(img):
 #函数声明了一个face_cascade的变量,该变量为CascadeClassifier的对象,用于检测人脸(frontalface)
 face_cascade = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')
 #进行灰度化处理
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 #进行实际的人脸检测,传递参数是scaleFactor和minNeighbor,分别表示人脸检测过程中每次迭代时图像的压缩率和每个人脸矩形保留近邻数目的最小值
 faces = face_cascade.detectMultiScale(gray,1.3,5)
 for (x,y,w,h) in faces:
 #依次提取faces变量中的值来画矩形
 img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,255),2)
 cv2.imshow('face_track',img)
 #避免图形窗口关闭
 cv2.waitKey(0)

上面就是主要的函数,当然你也可以不用函数,直接写在while循环里面,下面是完整的程序代码

import cv2

filename = cv2.imread('face_2.jpg')

def detect(img):
 face_cascade = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 faces = face_cascade.detectMultiScale(gray,1.3,5)
 for (x,y,w,h) in faces:
 img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,255),2)
 cv2.imshow('face_track',img)
 cv2.waitKey(0)

if __name__ == "__main__":
 detect(filename)

运行结果

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

numpy.random.seed()的使用实例解析

这个函数的使用方法,已经有前辈讲解过了,只是自己在测试的时候有一些思考,所以便写了这篇博客。下面是前辈文章的原话: seed( ) 用于指定随机数生成时所用算法开始的整数值,如果使用相...

使用Python编写一个在Linux下实现截图分享的脚本的教程

引子 Linux下不支持QQ等功能丰富的IM,虽然可以通过wine运行QQ2012,但是还是喜欢在gtalk群中聊天,gtalk群不支持图片方式,这就要靠我们大家自己来解决了,eleve...

Python把对应格式的csv文件转换成字典类型存储脚本的方法

Python把对应格式的csv文件转换成字典类型存储脚本的方法

该脚本是为了结合之前的编写的脚本,来实现数据的比对模块,实现数据的自动化!由于数据格式是定死的,该代码只做参考,有什么问题可以私信我! CSV的数据格式截图如下: readDataTo...

python生成式的send()方法(详解)

随便在网上找了找,感觉都是讲半天讲不清楚,这里写一下。 def generator(): while True: receive=yield 1 print('e...

PyQt5根据控件Id获取控件对象的方法

如下所示: self.findChild(QComboBox, "name") self is class first parameter is Type second pa...