读取json格式为DataFrame(可转为.csv)的实例讲解

yipeiwu_com6年前Python基础

有时候需要读取一定格式的json文件为DataFrame,可以通过json来转换或者pandas中的read_json()。

import pandas as pd
import json
data = pd.DataFrame(json.loads(open('jsonFile.txt','r+').read()))#方法一
dataCopy = pd.read_json('jsonFile.txt',typ='frame') #方法二
pandas.read_json(path_or_buf=None, orient=None, typ='frame', dtype=True, convert_axes=True, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, lines=False)[source]
 Convert a JSON string to pandas object
 Parameters: 
 path_or_buf : a valid JSON string or file-like, default: None
 The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.json
 orient : string,
 Indication of expected JSON string format. Compatible JSON strings can be produced by to_json() with a corresponding orient value. The set of possible orients is:
  'split' : dict like {index -> [index], columns -> [columns], data -> [values]}
  'records' : list like [{column -> value}, ... , {column -> value}]
  'index' : dict like {index -> {column -> value}}
  'columns' : dict like {column -> {index -> value}}
  'values' : just the values array
 The allowed and default values depend on the value of the typ parameter.
  when typ == 'series',
  allowed orients are {'split','records','index'}
  default is 'index'
  The Series index must be unique for orient 'index'.
  when typ == 'frame',
  allowed orients are {'split','records','index', 'columns','values'}
  default is 'columns'
  The DataFrame index must be unique for orients 'index' and 'columns'.
  The DataFrame columns must be unique for orients 'index', 'columns', and 'records'.
 typ : type of object to recover (series or frame), default ‘frame'
 dtype : boolean or dict, default True
 If True, infer dtypes, if a dict of column to dtype, then use those, if False, then don't infer dtypes at all, applies only to the data.
 convert_axes : boolean, default True
 Try to convert the axes to the proper dtypes.
 convert_dates : boolean, default True
 List of columns to parse for dates; If True, then try to parse datelike columns default is True; a column label is datelike if
  it ends with '_at',
  it ends with '_time',
  it begins with 'timestamp',
  it is 'modified', or
  it is 'date'
 keep_default_dates : boolean, default True
 If parsing dates, then parse the default datelike columns
 numpy : boolean, default False
 Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True.
 precise_float : boolean, default False
 Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality
 date_unit : string, default None
 The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of ‘s', ‘ms', ‘us' or ‘ns' to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively.
 lines : boolean, default False
 Read the file as a json object per line.
 New in version 0.19.0.
 encoding : str, default is ‘utf-8'
 The encoding to use to decode py3 bytes.
 New in version 0.19.0.

以上这篇读取json格式为DataFrame(可转为.csv)的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中的复制操作及copy模块中的浅拷贝与深拷贝方法

程序中常常需要复制一个对象, 按思路应该是这样的 a = [1, 2, 3] b = a # [1, 2, 3] print b 已经复制好了,但是现在得改变一下第一个元素...

Python单体模式的几种常见实现方法详解

本文实例讲述了Python单体模式的几种常见实现方法。分享给大家供大家参考,具体如下: 这里python实现的单体模式,参考了:https://stackoverflow.com/que...

python的tkinter布局之简单的聊天窗口实现方法

python的tkinter布局之简单的聊天窗口实现方法

本文实例展示了一个python的tkinter布局的简单聊天窗口。分享给大家供大家参考之用。具体方法如下: 该实例展示的是一个简单的聊天窗口,可以实现下方输入聊天内容,点击发送,可以增加...

初学python的操作难点总结(新手必看篇)

如下所示: 1 在cmd下 盘与盘之间的切换 直接 D或d: 就好 2 查找当前盘或者文件下面的目录 直接 dir 3 想在一个盘下进去一个文件夹,用cd空格目标文件 cd p 4 写文...

python单例模式获取IP代理的方法详解

引言 最近在学习python,先说一下我学Python得原因,一个是因为它足够好用,完成同样的功能,代码量会比其他语言少很多,有大量的丰富的库可以使用,基本上前期根本不需要自己造什么轮子...