读取json格式为DataFrame(可转为.csv)的实例讲解

yipeiwu_com5年前Python基础

有时候需要读取一定格式的json文件为DataFrame,可以通过json来转换或者pandas中的read_json()。

import pandas as pd
import json
data = pd.DataFrame(json.loads(open('jsonFile.txt','r+').read()))#方法一
dataCopy = pd.read_json('jsonFile.txt',typ='frame') #方法二
pandas.read_json(path_or_buf=None, orient=None, typ='frame', dtype=True, convert_axes=True, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, lines=False)[source]
 Convert a JSON string to pandas object
 Parameters: 
 path_or_buf : a valid JSON string or file-like, default: None
 The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.json
 orient : string,
 Indication of expected JSON string format. Compatible JSON strings can be produced by to_json() with a corresponding orient value. The set of possible orients is:
  'split' : dict like {index -> [index], columns -> [columns], data -> [values]}
  'records' : list like [{column -> value}, ... , {column -> value}]
  'index' : dict like {index -> {column -> value}}
  'columns' : dict like {column -> {index -> value}}
  'values' : just the values array
 The allowed and default values depend on the value of the typ parameter.
  when typ == 'series',
  allowed orients are {'split','records','index'}
  default is 'index'
  The Series index must be unique for orient 'index'.
  when typ == 'frame',
  allowed orients are {'split','records','index', 'columns','values'}
  default is 'columns'
  The DataFrame index must be unique for orients 'index' and 'columns'.
  The DataFrame columns must be unique for orients 'index', 'columns', and 'records'.
 typ : type of object to recover (series or frame), default ‘frame'
 dtype : boolean or dict, default True
 If True, infer dtypes, if a dict of column to dtype, then use those, if False, then don't infer dtypes at all, applies only to the data.
 convert_axes : boolean, default True
 Try to convert the axes to the proper dtypes.
 convert_dates : boolean, default True
 List of columns to parse for dates; If True, then try to parse datelike columns default is True; a column label is datelike if
  it ends with '_at',
  it ends with '_time',
  it begins with 'timestamp',
  it is 'modified', or
  it is 'date'
 keep_default_dates : boolean, default True
 If parsing dates, then parse the default datelike columns
 numpy : boolean, default False
 Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True.
 precise_float : boolean, default False
 Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality
 date_unit : string, default None
 The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of ‘s', ‘ms', ‘us' or ‘ns' to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively.
 lines : boolean, default False
 Read the file as a json object per line.
 New in version 0.19.0.
 encoding : str, default is ‘utf-8'
 The encoding to use to decode py3 bytes.
 New in version 0.19.0.

以上这篇读取json格式为DataFrame(可转为.csv)的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

对python字典元素的添加与修改方法详解

1、字典中的键存在时,可以通过字典名+下标的方式访问字典中改键对应的值,若键不存在则会抛出异常。如果想直接向字典中添加元素可以直接用字典名+下标+值的方式添加字典元素,只写键想后期对键赋...

python获取指定时间差的时间实例详解

python获取指定时间差的时间实例详解 在分析数据的时间经常需要截取一定范围时间的数据,比如三天之内,两小时前等等时间要求的数据,因此将该部分经常需要用到的功能模块化,方便以后以后用到...

python去除所有html标签的方法

本文实例讲述了python去除所有html标签的方法。分享给大家供大家参考。具体分析如下: 这段代码可以用于去除文本里的字符串标签,不包括标签里面的内容 import re html...

通过Python 获取Android设备信息的轻量级框架

今天跟大家分享一下,如何通过Python实现一个轻量级的库来获取电脑上连接的Android设备信息,为什么说轻量呢因为整个库也就4KB,相比其他诸如Appetizer这样动辄就8MB多的...

再谈Python中的字符串与字符编码(推荐)

再谈Python中的字符串与字符编码(推荐)

本节内容: 1.前言 2.相关概念 3.Python中的默认编码 4.Python2与Python3中对字符串的支持 5.字符编码转换 一、前言 Python中的字符编码是个老...