python多进程提取处理大量文本的关键词方法

yipeiwu_com5年前Python基础

经常需要通过python代码来提取文本的关键词,用于文本分析。而实际应用中文本量又是大量的数据,如果使用单进程的话,效率会比较低,因此可以考虑使用多进程。

python的多进程只需要使用multiprocessing的模块就行,如果使用大量的进程就可以使用multiprocessing的进程池--Pool,然后不同进程处理时使用apply_async函数进行异步处理即可。

实验测试语料:message.txt中存放的581行文本,一共7M的数据,每行提取100个关键词。

代码如下:

#coding:utf-8
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
from multiprocessing import Pool,Queue,Process
import multiprocessing as mp 
import time,random
import os
import codecs
import jieba.analyse
jieba.analyse.set_stop_words("yy_stop_words.txt")
def extract_keyword(input_string):
	#print("Do task by process {proc}".format(proc=os.getpid()))
	tags = jieba.analyse.extract_tags(input_string, topK=100)
	#print("key words:{kw}".format(kw=" ".join(tags)))
	return tags
#def parallel_extract_keyword(input_string,out_file):
def parallel_extract_keyword(input_string):
	#print("Do task by process {proc}".format(proc=os.getpid()))
	tags = jieba.analyse.extract_tags(input_string, topK=100)
	#time.sleep(random.random())
	#print("key words:{kw}".format(kw=" ".join(tags)))
	#o_f = open(out_file,'w')
	#o_f.write(" ".join(tags)+"\n")
	return tags
if __name__ == "__main__":
	data_file = sys.argv[1]
	with codecs.open(data_file) as f:
		lines = f.readlines()
		f.close()
	
	out_put = data_file.split('.')[0] +"_tags.txt" 
	t0 = time.time()
	for line in lines:
		parallel_extract_keyword(line)
		#parallel_extract_keyword(line,out_put)
		#extract_keyword(line)
	print("串行处理花费时间{t}".format(t=time.time()-t0))
	
	pool = Pool(processes=int(mp.cpu_count()*0.7))
	t1 = time.time()
	#for line in lines:
		#pool.apply_async(parallel_extract_keyword,(line,out_put))
	#保存处理的结果,可以方便输出到文件
	res = pool.map(parallel_extract_keyword,lines)
	#print("Print keywords:")
	#for tag in res:
		#print(" ".join(tag))
	pool.close()
	pool.join()
	print("并行处理花费时间{t}s".format(t=time.time()-t1))

运行:

python data_process_by_multiprocess.py message.txt

message.txt是每行是一个文档,共581行,7M的数据

运行时间:

不使用sleep来挂起进程,也就是把time.sleep(random.random())注释掉,运行可以大大节省时间。

以上这篇python多进程提取处理大量文本的关键词方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中的对象,方法,类,实例,函数用法分析

本文实例分析了Python中的对象,方法,类,实例,函数用法。分享给大家供大家参考。具体分析如下: Python是一个完全面向对象的语言。不仅实例是对象,类,函数,方法也都是对象。 复制...

深入了解Django View(视图系统)

深入了解Django View(视图系统)

Django View 官方文档 一个视图函数(类),简称视图,是一个简单的 Python 函数(类),它接受Web请求并且返回Web响应。响应可以是一张网页的HTML内容,一个重定向...

Python读取Excel表格,并同时画折线图和柱状图的方法

Python读取Excel表格,并同时画折线图和柱状图的方法

今日给大家分享一个Python读取Excel表格,同时采用表格中的数值画图柱状图和折线图,这里只需要几行代码便可以实。 首先我们需要安装一个Excel操作的库xlrd,这个很简单,在安装...

简单讲解Python中的闭包

闭包并不是什么新奇的概念,它早在高级语言开始发展的年代就产生了。闭包(Closure)是词法闭包(Lexical Closure)的简称。对闭包的具体定义有很多种说法,这些说法大体可以分...

Pandas之DataFrame对象的列和索引之间的转化

约定: import pandas as pd DataFrame对象的列和索引之间的转化 我们常常需要将DataFrame对象中的某列或某几列作为索引,或者将索引转化为对象的...