通过Pandas读取大文件的实例

yipeiwu_com6年前Python基础

当数据文件过大时,由于计算机内存有限,需要对大文件进行分块读取:

import pandas as pd
f = open('E:/学习相关/Python/数据样例/用户侧数据/test数据.csv')
reader = pd.read_csv(f, sep=',', iterator=True)
loop = True
chunkSize = 100000
chunks = []
while loop:
 try:
 chunk = reader.get_chunk(chunkSize)
 chunks.append(chunk)
 except StopIteration:
 loop = False
 print("Iteration is stopped.")
df = pd.concat(chunks, ignore_index=True)
print(df)

read_csv()函数的iterator参数等于True时,表示返回一个TextParser以便逐块读取文件;

chunkSize表示文件块的大小,用于迭代;

TextParser类的get_chunk方法用于读取任意大小的文件块;

StopIteration的异常表示在循环对象穷尽所有元素时报错;

concat()函数用于将数据做轴向连接:

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, Verify_integrity=False)

常用参数:

objs:Series,DataFrame或者是Panel构成的序列list;

axis:需要合并连接的轴,0是行,1是列;

join:连接的参数,inner或outer;

ignore=True表示重建索引。

以上这篇通过Pandas读取大文件的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch实现对输入超过三通道的数据进行训练

案例背景:视频识别 假设每次输入是8s的灰度视频,视频帧率为25fps,则视频由200帧图像序列构成.每帧是一副单通道的灰度图像,通过pythonb里面的np.stack(深度拼接)可将...

Scrapy-Redis结合POST请求获取数据的方法示例

前言 通常我们在一个站站点进行采集的时候,如果是小站的话 我们使用scrapy本身就可以满足。 但是如果在面对一些比较大型的站点的时候,单个scrapy就显得力不从心了。 要是我们能够多...

python实现telnet客户端的方法

本文实例讲述了python实现telnet客户端的方法。分享给大家供大家参考。具体如下: python实现的telnet客户端程序,python自带一个telnetlib模块,可以通过其...

对Django 中request.get和request.post的区别详解

Django 中request.get和request.post的区别 POST和GET差异: POST和GET是HTTP协议定义的与服务器交互的方法。GET一般用于获取/查询资源信息,...

Python 安装setuptools和pip工具操作方法(必看)

Python 安装setuptools和pip工具操作方法(必看)

setuptools模块和pip模块是python进行第三方库扩展的极重要工具,例如我们在需要安装一些爬虫或者数据分析的包时就可以使用pip install命令来直接安装这些包了,因此p...