pandas 对每一列数据进行标准化的方法

yipeiwu_com5年前Python基础

两种方式

>>> import numpy as np 
>>> import pandas as pd 
Backend TkAgg is interactive backend. Turning interactive mode on. 
>>> np.random.seed(1) 
>>> df_test = pd.DataFrame(np.random.randn(4,4)* 4 + 3) 
>>> df_test 
   0   1   2   3 
0 9.497381 0.552974 0.887313 -1.291874 
1 6.461631 -6.206155 9.979247 -0.044828 
2 4.276156 2.002518 8.848432 -5.240563 
3 1.710331 1.463783 7.535078 -1.399565 
>>> df_test_1 = df_test 
>>> df_test.apply(lambda x: (x - np.min(x)) / (np.max(x) - np.min(x))) #方法一 
   0   1   2   3 
0 1.000000 0.823413 0.000000 0.759986 
1 0.610154 0.000000 1.000000 1.000000 
2 0.329499 1.000000 0.875624 0.000000 
3 0.000000 0.934370 0.731172 0.739260 
 
>>> (df_test_1 - df_test_1.min()) / (df_test_1.max() - df_test_1.min())#方法二 
   0   1   2   3 
0 1.000000 0.823413 0.000000 0.759986 
1 0.610154 0.000000 1.000000 1.000000 
2 0.329499 1.000000 0.875624 0.000000 
3 0.000000 0.934370 0.731172 0.739260 

结果一致且正确

以上这篇pandas 对每一列数据进行标准化的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python解析基于xml格式的日志文件

python解析基于xml格式的日志文件

大家中午好,由于过年一直还没回到状态,好久没分享一波小知识了,今天,继续给大家分享一波Python解析日志的小脚本。 首先,同样的先看看日志是个啥样。 都是xml格式的,是不是看着就头...

浅谈python中的数字类型与处理工具

浅谈python中的数字类型与处理工具

python中的数字类型工具 python中为更高级的工作提供很多高级数字编程支持和对象,其中数字类型的完整工具包括: 1.整数与浮点型, 2.复数, 3.固定精度十进制数, 4.有理分...

Python编程中的异常处理教程

1、异常简介 从软件方面来说,错误是语法或是逻辑上的,当python检测到一个错误时,解释器就会指出当前流已经无法继续执行下去,这时候就出现了异常。异常分为两个阶段:首先是引起异常发生的...

Python3远程监控程序的实现方法

简述 一开始觉得这个很有趣,然后就想来做一个来玩一下 使用语言: Python3 使用工具:opencv视频监控 + socket数据传输技术 程序检验: 这里我考虑了一下,发现还是没有...

解决nohup执行python程序log文件写入不及时的问题

问题 今天用nohup后台执行python程序,并将标准输出和错误输出重定向到一个log文件,但发现log文件隔好久才会更新,很煎熬。。。然而正常屏幕输出时候非常及时。 不确定程序是不是...