Python对数据进行插值和下采样的方法

yipeiwu_com6年前Python基础

使用Python进行插值非常方便,可以直接使用scipy中的interpolate

import numpy as np
x1 = np.linspace(1, 4096, 1024)
x_new = np.linspace(1, 4096, 4096)
from scipy import interpolate
tck = interpolate.splrep(x1, data)
y_bspline = interpolate.splev(x_new, tck)

其中y_bspline就是从1024插值得到的4096的数据

但是,scipy中好像并没有进行下采样的函数,嗯..难道是因为太过简单了么,不过好像用一个循环就可以完成,但如果把向量看成一个时间序列,使用pandas中的date_range模块也可以十分方便的以不同频率进行采样,并且,很多对文件的操作都是使用pandas操作的。

import pandas as pd
index = pd.date_range('1/1/2000', periods=4096, freq='T') #这个起始时间任意指定,freq为其频率
data = pd.read_table(filename, names=['feat'])
data.index = index
data_obj = data.resample('4T', label='right') #第一个为抽样频率,label表示左右开闭区间
data_new = data_new.asfreq()[0:]

因为data.resample返回的是一个 pandas.tseries.resample.DatetimeIndexResampler对象

所以想要获取其中的值可以通过 data_new.asfreq()[0:]获取

更多方法详见 pandas.DataFrame.resample

以上这篇Python对数据进行插值和下采样的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python语言中with as的用法使用详解

With语句是什么? 有一些任务,可能事先需要设置,事后做清理工作。对于这种场景,Python的with语句提供了一种非常方便的处理方式。一个很好的例子是文件处理,你需要获取一个文件句...

Python中的闭包总结

前几天又有人在我的这篇文章 python项目练习一:即时标记 下留言,关于其中一个闭包和re.sub的使用不太清楚。我在自己的博客上搜索了下,发现没有写过闭包相关的东西,所以决定总结一下...

python 文件操作api(文件操作函数)

python中对文件、文件夹(文件操作函数)的操作需要涉及到os模块和shutil模块。 得到当前工作目录,即当前Python脚本工作的目录路径: os.getcwd() 返回指定目录下...

Python urlopen 使用小示例

一、打开一个网页获取所有的内容 from urllib import urlopendoc = urlopen("http://www.baidu.com").read()print d...

tensorflow的计算图总结

计算图 在 TensorFlow 中用计算图来表示计算任务。 计算图,是一种有向图,用来定义计算的结构,实际上就是一系列的函数的组合。 用图的方式,用户通过用一些简单的容易理解的数学函...