数据清洗--DataFrame中的空值处理方法

yipeiwu_com5年前Python基础

数据清洗是一项复杂且繁琐的工作,同时也是整个数据分析过程中最为重要的环节。

在python中空值被显示为NaN。首先,我们要构造一个包含NaN的DataFrame对象。

>>> import numpy as np
>>> import pandas as pd
>>> from pandas import Series,DataFrame
>>> from numpy import nan as NaN
>>> data = DataFrame([[12,'man','13865626962'],[19,'woman',NaN],[17,NaN,NaN],[NaN,NaN,NaN]],columns=['age','sex','phone'])
>>> data
 age sex  phone
0 12.0 man 13865626962
1 19.0 woman   NaN
2 17.0 NaN   NaN
3 NaN NaN   NaN

删除NaN

删除NaN所在的行

删除表中全部为NaN的行

>>> data.dropna(axis=0, how='all')
 age sex  phone
0 12.0 man 13865626962
1 19.0 woman   NaN
2 17.0 NaN   NaN

删除表中任何含有NaN的行

>>> data.dropna(axis=0, how='any')
 age sex  phone
0 12.0 man 13865626962

删除NaN所在的列

删除表中全部为NaN的列

>>> data.dropna(axis=1, how='all')
 age sex  phone
0 12.0 man 13865626962
1 19.0 woman   NaN
2 17.0 NaN   NaN
3 NaN NaN   NaN

删除表中任何含有NaN的列

>>> data.dropna(axis=1, how='any')
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3]

注意:axis 就是”轴,数轴“的意思,对应多维数组里的”维“。此处作者的例子是二维数组,所以,axis的值对应表示:0轴(行),1轴(列)。

填充NaN

如果不想过滤(去除)数据,我们可以选择使用fillna()方法填充NaN,这里,作者使用数值'0'替代NaN,来填充DataFrame。

>>> data.fillna(0)
 age sex  phone
0 12.0 man 13865626962
1 19.0 woman   0
2 17.0  0   0
3 0.0  0   0

我们还可以通过字典来填充,以实现对不同的列填充不同的值。

>>> data.fillna({'sex':233,'phone':666})
 age sex  phone
0 12.0 man 13865626962
1 19.0 woman   666
2 17.0 233   666
3 NaN 233   666

以上这篇数据清洗--DataFrame中的空值处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现的计数排序算法示例

Python实现的计数排序算法示例

本文实例讲述了Python实现的计数排序算法。分享给大家供大家参考,具体如下: 计数排序是一种非常快捷的稳定性强的排序方法,时间复杂度O(n+k),其中n为要排序的数的个数,k为要排序的...

python批量修改文件夹及其子文件夹下的文件内容

python批量修改文件夹及其子文件夹下的文件内容

前言:前几天我看一位同学要修改很多文件中的数据,该文件数据很规律,一行只有三个数,需要将每行最后一个数字改为负数,但文件有上千个,分布在每个文件夹下面以及它的多级子文件夹下,看他用exc...

Python中多线程的创建及基本调用方法

1. 多线程的作用 简而言之,多线程是并行处理相互独立的子任务,从而大幅度提高整个任务的效率。 2. Python中的多线程相关模块和方法 Python中提供几个用于多线程编程的模块,包...

django限制匿名用户访问及重定向的方法实例

前言 大家应该都遇到过,在某些页面中,我们不希望匿名用户能够访问,例如个人页面等,这种页面只允许已经登录的用户去访问,在django中,我们也有比较多的方式去实现。 最简单的,我们在v...

Python学习笔记之Break和Continue用法分析

本文实例讲述了Python学习笔记之Break和Continue用法。分享给大家供大家参考,具体如下: Python 中的Break 和 Continue break:控制何时循环...