Caffe均值文件mean.binaryproto转mean.npy的方法

yipeiwu_com6年前Python基础

mean.binaryproto转mean.npy

使用Caffe的C++接口进行操作时,需要的图像均值文件是pb格式,例如常见的均值文件名为mean.binaryproto;但在使用python接口进行操作时,需要的图像均值文件是numpy格式,例如mean.npy。所以在跨语言进行操作时,需要将mean.binaryproto转换成mean.npy,转换代码如下:

import caffe
import numpy as np

MEAN_PROTO_PATH = 'mean.binaryproto'        # 待转换的pb格式图像均值文件路径
MEAN_NPY_PATH = 'mean.npy'             # 转换后的numpy格式图像均值文件路径

blob = caffe.proto.caffe_pb2.BlobProto()      # 创建protobuf blob
data = open(MEAN_PROTO_PATH, 'rb' ).read()     # 读入mean.binaryproto文件内容
blob.ParseFromString(data)             # 解析文件内容到blob

array = np.array(caffe.io.blobproto_to_array(blob))# 将blob中的均值转换成numpy格式,array的shape (mean_number,channel, hight, width)
mean_npy = array[0]                # 一个array中可以有多组均值存在,故需要通过下标选择其中一组均值
np.save(MEAN_NPY_PATH ,mean_npy)

已知图像均值,构造mean.npy

如果已知图像中每个通道的均值,例如3通道图像每个通道的均值分别为104,117,123,我们也可以通过其构造mean.npy。代码如下:

import numpy as np

MEAN_NPY_PATH = 'mean.npy'

mean = np.ones([3,256, 256], dtype=np.float)
mean[0,:,:] = 104
mean[1,:,:] = 117
mean[2,:,:] = 123

np.save(MEAN_NPY, mean)

载入mean.npy

上面我们用两种方式构造了均值文件mean.npy,在使用时载入mean.npy的代码如下:

import numpy as np

mean_npy = np.load(MEAN_NPY_PATH)
mean = mean_npy.mean(1).mean(1)

以上这篇Caffe均值文件mean.binaryproto转mean.npy的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解Python中的from..import绝对导入语句

相对或者绝对import 更多的复杂部分已经从python2.5以来实现:导入一个模块可以指定使用绝对或者包相对的导入。这个计划将移动到使绝对的导入成为默认的细节在其他版本的pytho...

python中的闭包函数

闭包函数初探 通常我们定义函数都是这样定义的 def foo(): pass 其实在函数式编程中,函数里面还可以嵌套函数,如下面这样 def foo(): print("h...

pytorch 获取层权重,对特定层注入hook, 提取中间层输出的方法

如下所示: #获取模型权重 for k, v in model_2.state_dict().iteritems(): print("Layer {}".format(k)) p...

python实现的用于搜索文件并进行内容替换的类实例

本文实例讲述了python实现的用于搜索文件并进行内容替换的类。分享给大家供大家参考。具体实现方法如下: #!/usr/bin/python -O # coding: UTF-8 "...

python脚本后台执行方式

在Linux中,可以使用nohup将脚本放置后台运行,如下: nohup python myscript.py params1 > nohup.out 2>&1 &...