Python常见MongoDB数据库操作实例总结

yipeiwu_com5年前Python基础

本文实例讲述了Python常见MongoDB数据库操作。分享给大家供大家参考,具体如下:

MongoDB 是一个基于分布式文件存储的数据库。由C++语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。

MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能。接下来记录一下在使用PyMongo操作MongoDB

下载pymongo库

pip install pymongo

前置操作

# 获取MongoDB操作,localhost为host,27017为MongoDB默认port
client = pymongo.MongoClient("mongodb://localhost:27017/")
# 操作test数据库
db = client.test
# 获取Student集合
student = db.Student

插入单条数据

# 插入一条数据,并获取返回结果
res = student.insert_one({"name":"老王"})
# 获取插入之后该条数据的id
object_id = res.inserted_id
print(object_id)

插入多条数据

# 插入9条数据
res = student.insert_many([{"name":"name%d"%index} for index in range(1,10)])
# 获取插入之后该9条数据的ids,object_ids为一个list
object_ids = res.inserted_ids
print(object_ids)

查询单条数据

# 查询单条数据,res为一个dict
res = student.find_one({"name":"老王"})

查询满足条件的所有数据

# 查询满足条件的所有数据,res为一个pymongo.cursor.Cursor对象
res = student.find({"name":"老王"})
# 获取数据个数
print(res.count())
for index in res:
  # index为一个dict。注意:这个循环只能进行一次,如需再次操作返回结果,需要在find一次,或将list(res),将这个返回结果保存起来
  print(index)

更新

# 查询并更新。{"name":"老王"}为查询条件;{"$set":{"addr":"家住隔壁"}}更新数据;upsert=False找不到不插入数据,upsert=True找不到则插入数据
# res为返回结果,res为一个字典对象,是之前数据的字典
res = student.find_one_and_update({"name":"老王"},{"$set":{"addr":"家住隔壁"}},upsert=False)

删除单条数据

student.delete_one({"name":"老王"})

删除匹配条件的所有数据

student.delete_many({"name":"老王"})

附:更多MongoDB的操作

MongoDB 是一个基于分布式文件存储的数据库。由C++语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。

MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能。接下来记录一下在终端怎么使用MongoDB:

常用命令

切换/创建数据库

use xxx;  # 切换数据库,不存在则创建

插入数据

# 插入数据,name="Python",age=100,Student为集合(表)名,Student不存在会自动创建
db.Student.insert({name:"Python",age:100})

或者定义一个字典

document = {name:"Python",age:100}
db.Student.insert(document)

查询数据

# 查询所有数据
db.Student.find()
# 查询所有数据并格式化输出
db.Student.find().pretty()
# 条件查询,name="python"的所有数据
db.Student.find({name:"python"})
# 条件查询,age > 50的所有数据
db.Student.find({age:{$gt:50}})
# 条件查询,age >= 50的所有数据
db.Student.find({age:{$gte:50}})
# 条件查询,age < 50的所有数据
db.Student.find({age:{$lt:50}})
# 条件查询,age <= 50的所有数据
db.Student.find({age:{$lte:50}})
# 条件查询,age == 50的所有数据
db.Student.find({age:{$eq:50}})
# 条件查询,age != 50的所有数据
db.Student.find({age:{$ne:50}})
# 条件查询,存在name字段的所有数据
db.Student.find({name:{$exists:true}})
# 多条件查询,name="python"并且age=50的所有数据
db.Student.find({name:"python",age:50})
# $and语法,name="python"并且age=50的所有数据。
db.Student.find({$and:[{name:"python"},{age:50}]})
# 查询字典数组的数据infoList = [{"province":"广东","city":"深圳"}]
db.Student.find({"infoList.province":"广东"})
# 查询数量
db.Student.find({name:"python"}).count()
# 或查询,$or语法。查询name="python"或name="android"的所有数据
db.Student.find({$or:[{name:"python"},{name:"android"}]})
# $size语法,查询info数组长度为8的所有数据
db.Student.find({info:{$size:8}})
# $not语法,查询info数组长度不为8的所有数据
db.Student.find({info:{$not:{$size:8}}})
# and与or联合使用.相当于 where age=18 and (name="python" or name="android")
db.Student.find({age:18,$or:[{name:"python"},{name:"android"}]})
# $nor语法,搜索name既不等于"python"且不等于"android"的所有数据
db.Student.find({"$nor":[{name:"python"},{name:"android"}]})
# $in语法.搜索name="老张"或name="老王"的所有数据
db.Student.find({name:{$in:["老王","老张"]}})
# $nin语法.搜索name不为"老张"或"老王"的所有数据
db.Student.find({name:{$nin:["老王","老张"]}})
# $all语法,搜索info=["aaa","bbb"]的所有数据
db.Student.find({info:{$all:["aaa","bbb"]}})
# $mod语法,搜索sex % 2 == 0的所有数据
db.Student.find({sex:{$mod:[2,0]}})
# $where语法,搜索age=info的所有数据
db.Student.find({"$where":"this.age==this.info"})
# $slice语法,过滤,info数组中的后3个数据
db.Student.find({},{info:{$slice:-3}})
# $slice语法,过滤,info数组中的前3个数据
db.Student.find({},{info:{$slice:3}})
# $slice语法,过滤,info数组中跳过20个数据之后取10个数据
db.Student.find({},{info:{$slice:[20,10]}})
# $slice语法,过滤,info数组中倒数第20个数据之后取10个数据
db.Student.find({},{info:{$slice:[-20,10]}})
# 正则.获取name包含"王"的所有数据
db.Student.find({name:{$regex:"王"}})
# 正则。获取name包含"a"并且不区分大小写的所有数据
db.Student.find({name:{$regex:"a",$options:"i"}})

更新数据

# 找到name="MongoDB"的数据,将其更改为name="MongoDB学习",只修改匹配到的第一条数据
db.Student.update({name:"MongoDB"},{$set:{name:"MongoDB学习"}})
# 找不到name="MongoDB"的数据,则插入name="MongoDB学习",找到了则为修改。upsert:true找不到则插入,默认false,不插入
db.Student.update({name:"MongoDB"},{$set:{name:"MongoDB学习"}},{upsert:true})
# 找到name="MongoDB"的数据,将其更改为name="MongoDB学习"。multi:true更改所有匹配的数据,默认false,只匹配第一条
db.Student.update({name:"MongoDB"},{$set:{name:"MongoDB学习"}},{multi:true})
# 匹配name="MongoDB"的第一条数据,将其更改为name="MongoDB学习"
db.Student.updateOne({name:"MongoDB"},{$set:{name:"MongoDB学习"}})
# 更新字典数组的数据infoList = [{"province":"广东","city":"深圳"}]
db.Student.update({"infoList.province":"广东"},{"$set":{"province.$.city":"广州"}})
# 将age>18的数据,修改name="xxx",第一个false:不存在不会插入(true为不存在则插入),第二个false:只匹配第一条数据(true为匹配所有数据)
db.Student.update({age:{$gt:18}},{$set:{name:"xxx"}},false,false)
# 在name="python"的所有数据里,将age字段值+1
db.Student.update({name:"python"},{$inc:{age:1}})
# 在name="python"的所有数据里,将age键删除,1可以是任何值
db.Student.update({name:"python"},{$unset:{age:1}})
# 在name="python"的所有数据里,将age键名修改成"Age"
db.Student.update({name:"python"},{$rename:{age:"Age"}})
# 在name="python"的所有数据里,在名为array的数组添加abc元素
db.Student.update({name:"python"},{$push:{array:"abc"}})
# 在name="python"的所有数据里,将["abc","adc"]里所有元素添加到array里面
db.Student.update({name:"python"},{$pushAll:{array:["abc","adc"]}})
# 在name="python"的所有数据里,在名为array的数组删除abc元素
db.Student.update({name:"python"},{$pull:{array:"abc"}})
# 在name="python"的所有数据里,将["abc","adc"]里所有元素全部从array里删除
db.Student.update({name:"python"},{$pullAll:{array:["abc","adc"]}})
# 在name="python"的所有数据里,删除array数组尾部数据,无论array为多少都只删除一条,array小于0时,删除头部第一条,array大于等于0时,删除尾部第一条
db.Student.update({name:"python"},{$pop:{array:2}})

删除数据

# 删除匹配到的所有数据
db.Student.remove({name:"老张"})
# 删除匹配到第一条数据,justOne:true只删除一条数据
db.Student.remove({name:"老张"},{justOne:true})

**type**:type**:type操作符是基于BSON类型来检索集合中匹配的数据类型,并返回结果

常用type类型:

数字 类型
1 Double
2 String
3 Object
4 Array
5 Binary data
6 Undefined
7 Object id
8 Boolean
9 Date
10 Null
11 Regular Expression
13 JavaScript
14 Symbol
15 JavaScript (with scope)
16 32-bit integer
17 Timestamp
18 64-bit integer
255 Min key
127 Max key

# 查询name为String类型的所有数据,2为String
db.Student.find({name:{$type:2}})

  • limit:限制条数
# 查询name="python"的所有数据,限制2条
db.Student.find({name:"python"}).limit(2)

  • skip:跳过数据
# 查询name > 15的数据,跳过前两条,并限制只查询两条
db.Student.find({name:{$gt:15}}).limit(2).skip(2)

  • sort:排序,1位升序,-1位降序
# 查询所有数据,并以age升序排列
db.Student.find().sort({age:1})
# 多条件排序
db.Student.find().sort({age:1,score:-1})

  • findAndModify:查找并更新
# 查找name="python"的所有数据,并修改age=18
db.Student.findAndModify({query:{name:"python"},update:{$set:{age:18}}})

  • ObjectId
# 获取文档的创建时间
ObjectId("598542475e6b2464187abef7").getTimestamp()

  • aggregate:聚合查询

常用聚合表达式:

表达式 描述
$sum
$avg 平均值
$min 最小值
$max 最大值
$push 在结果中插入值到数组中
$addToSet 在结果中插入值到数组中,但不创建副本
$first 根据资源文档的排序,获取第一个数据
$last 根据资源文档的排序,获取最后一个数据

# 根据name分组,并插入sum,sum值为该组所有age的和
db.Student.aggregate([{$group:{_id:"$name",sum:{$sum:"$age"}}}])
# 根据name分组,并插入sum,sum值为该组的数量,并以sum排序,升序
db.Student.aggregate([{$group:{_id:"$name",sum:{$sum:1}}}])
# 根据name分组,并插入avg,avg值为该组所有age的平均值
db.Student.aggregate([{$group:{_id:"$name",avg:{$avg:"$age"}}}])
# 根据name分组,并插入min,min值为该组所有age的最小值
db.Student.aggregate([{$group:{_id:"$name",min:{$min:"$age"}}}])
# 根据name分组,并插入max,max值为该组所有age的最大值
db.Student.aggregate([{$group:{_id:"$name",max:{$max:"$age"}}}])
# 根据name分组,并插入数组array,array值为该组所有的age值
db.Student.aggregate([{$group:{_id:"$name",array:{$push:"$age"}}}])
# 根据name分组,并插入数组array,array值为该组所有的age值
db.Student.aggregate([{$group:{_id:"$name",array:{$addToSet:"$age"}}}])
# 根据name分组,并插入f,f值为该组age下的第一个值
db.Student.aggregate([{$group:{_id:"$name",f:{$first:"$age"}}}])
# 根据name分组,并插入l,l值为该组age下的第一个值
db.Student.aggregate([{$group:{_id:"$name",l:{$last:"$age"}}}])

管道操作实例

1. $project:用于修改文档的输出结构

# 查询所有的name,age数据,默认包含_id数据。让不包含_id,可以使_id:0
db.Student.aggregate({$project:{name:1,age:1}})

此时输出的内容只有_id,name,age,_id是默认会输出的,想不输出_id,可以使_id:0

2. $match:用于过滤数据

db.Student.aggregate([{$match:{age:{$gt:19,$lte:23}}},{$group:{_id:null,count:{$sum:1}}}])

match过滤出age大于19且小于等于23的数据,然后将符合条件的记录送到下一阶段match过滤出age大于19且小于等于23的数据,然后将符合条件的记录送到下一阶段group管道操作符进行处理

3. $skip:将前5个过滤掉

db.Student.aggregate({$skip:5})

$skip将前面5个数据过滤掉

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python常见数据库操作技巧汇总》、《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

浅谈MySQL中的触发器

在很多时候,干得利索不如想的明白。方案应该根据场景来设计,不是盲目的依靠经验,当然这也算新经验!    需求是把公司的几套公共系统做成通过邮箱用户名和密码认证,只需记...

Python3实现的判断回文链表算法示例

本文实例讲述了Python3实现的判断回文链表算法。分享给大家供大家参考,具体如下: 问题: 请判断一个链表是否为回文链表。 方案一:指针法 class Solution: de...

python实现二分类的卡方分箱示例

解决的问题: 1、实现了二分类的卡方分箱; 2、实现了最大分组限定停止条件,和最小阈值限定停止条件; 问题,还不太清楚,后续补充。 1、自由度k,如何来确定,卡方阈值的自由度为 分箱数-...

python:print格式化输出到文件的实例

遇到一个写文件的小程序,需要把print输出改成输出到文件,遇到这个问题的思路是把需要的字符串拼接到一个字符串中,然后在写到文件中,这样做觉得很麻烦,想到之前的学的exec的使用,但是实...

Python3 tkinter 实现文件读取及保存功能

Python3 tkinter 实现文件读取及保存功能

tkinter介绍 tkinter是python自带的GUI库,是对图形库TK的封装 tkinter是一个跨平台的GUI库,开发的程序可以在win,linux或者mac下运行 #...