基于DataFrame改变列类型的方法

yipeiwu_com6年前Python基础

今天用numpy 的linalg.det()求矩阵的逆的过程中出现了一个错误:

TypeError: No loop matching the specified signature and casting was found for ufunc det 

查了半天发现是数据类型的问题,numpy在算逆的时候会先检查一下数据类型是否一致,若不一致就会报错(话说这个错误提示信息也太难理解了,还得看源码o(╯□╰)o)。

由于我的数据是用pandas.DataFrame读取的,所以每一列的数据类型有可能不同。

回头检查一下数据,果然有的是int,有的是float。所以全部改为float64类型。

找到了如下的方法,以及DataFrame数据类型:

DataFrame 类型转换方法—astype()

import pandas as pd
df = pd.DataFrame([{'col1':'a', 'col2':'1'}, {'col1':'b', 'col2':'2'}])

print df.dtypes

df['col2'] = df['col2'].astype('int')
print '-----------'
print df.dtypes

df['col2'] = df['col2'].astype('float64')
print '-----------'
print df.dtypes

输出:

col1 object
col2 object
dtype: object
-----------
col1 object
col2  int32
dtype: object
-----------
col1  object
col2 float64
dtype: object

astype()也能一次改变所有数据的类型:

In[30]:a
Out[31]: 
   a   b   c   d
0 0.891380 0.442167 -0.539450 1.023458
1 -0.488131 -1.847104 -0.209799 -0.768713
2 1.290434 0.327096 0.358406 0.422209

In[32]:a.astype('int32')
Out[32]: 
 a b c d
0 0 0 0 1
1 0 -1 0 0
2 1 0 0 0

附:data type list

Data type Description
bool_ Boolean (True or False) stored as a byte
int_ Default integer type (same as C long; normally either int64 or int32)
intc Identical to C int (normally int32 or int64)
intp Integer used for indexing (same as C ssize_t; normally either int32 or int64)
int8 Byte (-128 to 127)
int16 Integer (-32768 to 32767)
int32 Integer (-2147483648 to 2147483647)
int64 Integer (-9223372036854775808 to 9223372036854775807)
uint8 Unsigned integer (0 to 255)
uint16 Unsigned integer (0 to 65535)
uint32 Unsigned integer (0 to 4294967295)
uint64 Unsigned integer (0 to 18446744073709551615)
float_ Shorthand for float64.
float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa
float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa
float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa
complex_ Shorthand for complex128.
complex64 Complex number, represented by two 32-bit floats (real and imaginary components)
complex128 Complex number, represented by two 64-bit floats (real and imaginary components)

以上这篇基于DataFrame改变列类型的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在Mac上删除自己安装的Python方法

推荐使用 Homebrew 来安装第三方工具。自己安装的python散落在电脑各处,删除起来比较麻烦。今天在此记录一下删除的过程(本人以Python3.6为例)。 删除Python 3....

Django实现跨域请求过程详解

Django实现跨域请求过程详解

前言 CORS 即 Cross Origin Resource Sharing 跨域资源共享. 跨域请求分两种:简单请求、复杂请求. 简单请求 简单请求必须满足下述条件. HTTP方法为...

原来我一直安装 Python 库的姿势都不对呀

平常我都是直接执行 pip install 安装的第三方库,很多教程也是这么介绍的,一直以来我都认为这是标准的、正确的安装 Python 第三方库的姿势。直到我最近看到Python核心开...

使用tensorflow实现AlexNet

使用tensorflow实现AlexNet

AlexNet是2012年ImageNet比赛的冠军,虽然过去了很长时间,但是作为深度学习中的经典模型,AlexNet不但有助于我们理解其中所使用的很多技巧,而且非常有助于提升我们使用深...

Python的Django应用程序解决AJAX跨域访问问题的方法

引子 使用Django在服务器端写了一个API,返回一个JSON数据。使用Ajax调用该API: <!DOCTYPE HTML> <html> <he...