pytorch 数据集图片显示方法

yipeiwu_com5年前Python基础

图片显示

pytorch 载入的数据集是元组tuple 形式,里面包括了数据及标签(train_data,label),其中的train_data数据可以转换为torch.Tensor形式,方便后面计算使用。

同样给一些刚入门的同学在使用载入的数据显示图片的时候带来一些难以理解的地方,这里主要是将Tensor与numpy转换的过程,理解了这些就可以就行转换了

CIAFA10数据集

首先载入数据集,这里做了一些数据处理,包括图片尺寸、数据归一化等

import torch
from torch.autograd import Variable 
import matplotlib.pyplot as plt 
import torchvision.datasets as dset
import torchvision.transforms as transforms
from autoencoder import AutoEncoder
import torch.nn as nn
import torchvision
import numpy as np
dataset = dset.CIFAR10(root='../train/data', download=True, 
    transform=transforms.Compose([
    transforms.Scale(200),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    transforms.Gray()
    ]))

在这里 dataset 是一个CIFAR10对象,(大家可以查看一下他的源代码)

方式一

dataset[1] = ([torch.FloatTensor of size 1x200x200],9)

载入的第二个数据是个tensor格式,包含一个标签 9

这里我们做的就是将torch.FloatTensor 转换为numpy,然后显示

b = dataset[1][0].numpy()
#取数据,不取标签

因为这里的b仍然是1*200*200的大小,所以要重新reshape一下,适合输出图像

plt.imshow(b.reshape(200,200),cmap = 'gray')
plt.show()

然后可以显示图像了

方式二

利用torch的接口

img = torchvision.utils.make_grid(dataset[1][0]).numpy()
plt.imshow(np.transpose(img,(1,2,0)))
plt.show()

这用np.transpose 是因为plt.imshow在显示 时候输入的是(imgsize,imgsieze,channels),而这里得到的img是(3,200,200)的格式,所以进行了转换,才能显示

以上这篇pytorch 数据集图片显示方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python利用小波分析进行特征提取的实例

如下所示: #利用小波分析进行特征分析 #参数初始化 inputfile= 'C:/Users/Administrator/Desktop/demo/data/leleccum....

动态规划之矩阵连乘问题Python实现方法

动态规划之矩阵连乘问题Python实现方法

本文实例讲述了动态规划之矩阵连乘问题Python实现方法。分享给大家供大家参考,具体如下: 给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2 ,…,n-1。如...

浅谈flask截获所有访问及before/after_request修饰器

本文主要研究的是flask如何截获所有访问,以及before_request、after_request修饰器的相关内容,具体如下。 在学习着用flask开发安卓后天接口时,遇到一个需求...

Python多维/嵌套字典数据无限遍历的实现

最近拾回Django学习,实例练习中遇到了对多维字典类型数据的遍历操作问题,Google查询没有相关资料…毕竟是新手,到自己动手时发现并非想象中简单,颇有两次曲折才最终实现效果,将过程记...

python实现图片转字符小工具

python实现图片转字符小工具

本文实例为大家分享了python图片转字符小工具的具体实现代码,供大家参考,具体内容如下 from PIL import Image #灰度与字符的映射 ascii_char =...