python画一个玫瑰和一个爱心

yipeiwu_com6年前Python基础

节日用心准备的礼物,使用python画玫瑰和爱心,供大家参考,具体内容如下

#!/usr/bin/env python
#coding=utf-8
#女生节礼物
 
import rospy
from sensor_msgs.msg import LaserScan
import numpy
import copy
 
node_name = "Test_Maker"
 
class Test_Maker():
  def __init__(self):
    self.Define()
    rospy.Timer(rospy.Duration(0.5), self.Timer_CB1)
    rospy.Timer(rospy.Duration(0.5), self.Timer_CB2)
    rospy.Timer(rospy.Duration(0.5), self.Timer_CB3)
    rospy.Timer(rospy.Duration(0.5), self.Timer_CB4)
    rospy.spin()
 
  def Define(self):
    self.pub_scan1 = rospy.Publisher('test/test_scan1', LaserScan, queue_size=1)
    self.pub_scan2 = rospy.Publisher('test/test_scan2', LaserScan, queue_size=1)
    self.pub_scan3 = rospy.Publisher('test/test_scan3', LaserScan, queue_size=1)
    #慎用!!!!
    self.pub_scan4 = rospy.Publisher('test/test_scan4', LaserScan, queue_size=1)
 
  def Timer_CB1(self, e):
    data = LaserScan()
    data.header.frame_id = "base_link"
    data.angle_min = 0
    data.angle_max = numpy.pi*2
    data.angle_increment = numpy.pi*2 / 200
    data.range_max = numpy.Inf
    data.range_min = 0
    theta = 0
    for i in range(200):
      r = 8.* numpy.sin(5. * theta )
      data.ranges.append(copy.deepcopy(r))
      data.intensities.append(theta)
      r = 8.* numpy.sin(5. * -theta)
      data.ranges.append(copy.deepcopy(r))
      data.intensities.append(theta)
 
      theta += data.angle_increment
    data.header.stamp = rospy.Time.now()
    self.pub_scan1.publish(data)
 
  def Timer_CB2(self, e):
    data = LaserScan()
    data.header.frame_id = "base_link"
    data.angle_min = 0
    data.angle_max = numpy.pi*2
    data.angle_increment = numpy.pi*2 / 200
    data.range_max = numpy.Inf
    data.range_min = 0
    theta = 0
    for i in range(200):
      r = 8. * numpy.cos(5. * theta) + 1
      data.intensities.append(theta)
      data.ranges.append(copy.deepcopy(r))
      r = 8. * numpy.cos(5. * -theta) + 1
      data.intensities.append(theta)
      data.ranges.append(copy.deepcopy(r))
      theta += data.angle_increment
 
    data.header.stamp = rospy.Time.now()
    self.pub_scan2.publish(data)
 
  def Timer_CB3(self, e):
    data = LaserScan()
    data.header.frame_id = "base_link"
    data.angle_min = 0
    data.angle_max = numpy.pi*2
    data.angle_increment = numpy.pi*2 / 50
    data.range_max = numpy.Inf
    data.range_min = 0
    theta = 0
    for i in range(200):
      r = 2. * numpy.sin(5. * theta) + 1
      data.intensities.append(theta)
      data.ranges.append(copy.deepcopy(r))
      r = 2. * numpy.sin(5. * -theta) + 1
      data.intensities.append(theta)
      data.ranges.append(copy.deepcopy(r))
      theta += data.angle_increment
 
    data.header.stamp = rospy.Time.now()
    self.pub_scan3.publish(data)
 
  #慎用!!!!
  def Timer_CB4(self, e):
    data = LaserScan()
    data.header.frame_id = "base_link"
    data.angle_min = 0
    data.angle_max = numpy.pi*2
    data.angle_increment = data.angle_max / 200
    data.range_max = numpy.Inf
    data.range_min = 0
    theta = 0
    for i in range(200):
      r = 9. * numpy.arccos(numpy.sin(theta)) + 9
      data.ranges.append(r)
      theta += data.angle_increment
 
    data.header.stamp = rospy.Time.now()
    self.pub_scan4.publish(data)
 
if __name__ == '__main__':
  node_name = 'Test_Maker'
  rospy.init_node(node_name)
  try:
    Test_Maker()
  except rospy.ROSInterruptException:
    rospy.logerr('%s error'%node_name)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现KNN邻近算法

简介 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用...

python实现LRU热点缓存及原理

LRU LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。 基于列...

Python3 replace()函数使用方法

描述 replace() 方法把字符串中的 old(旧字符串) 替换成 new(新字符串),如果指定第三个参数max,则替换不超过 max 次。 语法 replace()方法语法: st...

Python3自动签到 定时任务 判断节假日的实例

不废话,直接上代码Python3.6 签到代码,只需修改url,账号,密码即可,此处是登录时无验证登录,有验证码的自行补充 # -*- coding:utf-8 -*- imp...

Python排序搜索基本算法之归并排序实例分析

Python排序搜索基本算法之归并排序实例分析

本文实例讲述了Python排序搜索基本算法之归并排序。分享给大家供大家参考,具体如下: 归并排序最令人兴奋的特点是:不论输入是什么样的,它对N个元素的序列排序所用时间与NlogN成正比。...