基于python中theano库的线性回归

yipeiwu_com5年前Python基础

theano库是做deep learning重要的一部分,其最吸引人的地方之一是你给出符号化的公式之后,能自动生成导数。本文使用梯度下降的方法,进行数据拟合,现在把代码贴在下方

代码块

import numpy as np 
import theano.tensor as T 
import theano 
import time 

class Linear_Reg(object): 
  def __init__(self,x): 
    self.a = theano.shared(value = np.zeros((1,), dtype=theano.config.floatX),name = 'a') 
    self.b = theano.shared(value = np.zeros((1,), 
dtype=theano.config.floatX),name = 'b') 
    self.result = self.a * x + self.b 
    self.params = [self.a,self.b] 
  def msl(self,y): 
    return T.mean((y - self.result)**2) 

def regrun(rate,data,labels): 

  X = theano.shared(np.asarray(data, 
                 dtype=theano.config.floatX),borrow = True) 
  Y = theano.shared(np.asarray(labels, 
                 dtype=theano.config.floatX),borrow = True) 

  index = T.lscalar() #定义符号化的公式
  x = T.dscalar('x')  #定义符号化的公式
  y = T.dscalar('y')  #定义符号化的公式

  reg = Linear_Reg(x = x) 
  cost = reg.msl(y) 


  a_g = T.grad(cost = cost,wrt = reg.a) #计算梯度 
  b_g = T.grad(cost = cost, wrt = reg.b) #计算梯度

  updates=[(reg.a,reg.a - rate * a_g),(reg.b,reg.b - rate * b_g)] #更新参数
  train_model = theano.function(inputs=[index], outputs = reg.msl(y),updates = updates,givens = {x:X[index], y:Y[index]}) 

  done = True 
  err = 0.0 
  count = 0 
  last = 0.0 
  start_time = time.clock() 
  while done: 
    #err_s = [train_model(i) for i in xrange(data.shape[0])] 
    for i in xxx:
      err_s = [train_model(i) ]
      err = np.mean(err_s)  

    #print err 
    count = count + 1 
    if count > 10000 or err <0.1: 
      done = False 
    last = err 
  end_time = time.clock() 
  print 'Total time is :',end_time -start_time,' s' # 5.12s 
  print 'last error :',err 
  print 'a value : ',reg.a.get_value() # [ 2.92394467]  
  print 'b value : ',reg.b.get_value() # [ 1.81334458] 

if __name__ == '__main__':  
  rate = 0.01 
  data = np.linspace(1,10,10) 
  labels = data * 3 + np.ones(data.shape[0],dtype=np.float64) +np.random.rand(data.shape[0])
  regrun(rate,data,labels) 

其基本思想是随机梯度下降。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

深入浅析python继承问题

有如下的代码: class p1: def __init__(self,a,b): print("init in p1") self.a1=a self.b1=b self.f1()...

Python实现一个转存纯真IP数据库的脚本分享

Python实现一个转存纯真IP数据库的脚本分享

前言 之前写过很多关于扫描脚本的文章,一直都没写自己的扫描IP段是哪里搞来的,也会有朋友经常来问一些扫描经验,说实话我觉得这个工具并没有实际的技术含量,但是能提高工作效率,就共享出来给大...

python中ConfigParse模块的用法

本文实例讲述了python中ConfigParse模块的用法,分享给大家供大家参考。具体方法如下: 写配置一般用ConfigParse.RawConfigParse类 读配置用Conf...

浅谈django url请求与数据库连接池的共享问题

浅谈django url请求与数据库连接池的共享问题

但凡介绍数据库连接池的文章,都会说“数据库连接是一种关键的有限的昂贵的资源,这一点在多用户的网页应用程序中体现得尤为突出。对数据库连接的管理能显著影响到整个应用程序的伸缩性和健壮性,影响...

python使用7z解压软件备份文件脚本分享

要求安装: 1.Python2.7z解压软件 backup_2.py 复制代码 代码如下:# Filename: backup_2.py '''Backup files. &n...