Python实现Dijkstra算法

yipeiwu_com6年前Python基础

Dijkstra算法

迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

迪杰斯特拉算法是求从某一个起点到其余所有结点的最短路径,是一对多的映射关系,是一种贪婪算法

示例:

算法

算法实现流程思路:
迪杰斯特拉算法每次只找离起点最近的一个结点,并将之并入已经访问过结点的集合(以防重复访问,陷入死循环),然后将刚找到的最短路径的结点作为中间结点来更新相邻结点的路径长度,这样循环找到图中一个个结点的最短路径。

"""
输入
graph 输入的图
src 原点
返回
dis 记录源点到其他点的最短距离
path 路径
"""
import json
def dijkstra(graph,src):
  if graph ==None:
    return None
  # 定点集合
  nodes = [i for i in range(len(graph))] # 获取顶点列表,用邻接矩阵存储图
  # 顶点是否被访问
  visited = []
  visited.append(src)
  # 初始化dis
  dis = {src:0}# 源点到自身的距离为0
  for i in nodes:
    dis[i] = graph[src][i]
  path={src:{src:[]}} # 记录源节点到每个节点的路径
  k=pre=src
  while nodes:
    temp_k = k
    mid_distance=float('inf') # 设置中间距离无穷大
    for v in visited:
      for d in nodes:
        if graph[src][v] != float('inf') and graph[v][d] != float('inf'):# 有边
          new_distance = graph[src][v]+graph[v][d]
          if new_distance <= mid_distance:
            mid_distance=new_distance
            graph[src][d]=new_distance # 进行距离更新
            k=d
            pre=v
    if k!=src and temp_k==k:
      break
    dis[k]=mid_distance # 最短路径
    path[src][k]=[i for i in path[src][pre]]
    path[src][k].append(k)

    visited.append(k)
    nodes.remove(k)
    print(nodes)
  return dis,path
if __name__ == '__main__':
  # 输入的有向图,有边存储的就是边的权值,无边就是float('inf'),顶点到自身就是0
  graph = [ 
    [0, float('inf'), 10, float('inf'), 30, 100],
    [float('inf'), 0, 5, float('inf'), float('inf'), float('inf')],
    [float('inf'), float('inf'), 0, 50, float('inf'), float('inf')],
    [float('inf'), float('inf'), float('inf'), 0, float('inf'), 10],
    [float('inf'), float('inf'), float('inf'), 20, 0, 60],
    [float('inf'), float('inf'), float('inf'), float('inf'), float('inf'), 0]]
  dis,path= dijkstra(graph, 0) # 查找从源点0开始带其他节点的最短路径
  print(dis)
  print(json.dumps(path, indent=4))


总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

tensorflow saver 保存和恢复指定 tensor的实例讲解

在实践中经常会遇到这样的情况: 1、用简单的模型预训练参数 2、把预训练的参数导入复杂的模型后训练复杂的模型 这时就产生一个问题: 如何加载预训练的参数。 下面就是我的总结。 为了方便说...

利用Python开发实现简单的记事本

利用Python开发实现简单的记事本

前言 本文的操作环境:ubuntu,Python2.7,采用的是Pycharm进行代码编辑,个人很喜欢它的代码自动补齐功能。 示例图 如上图,我们可以看到这个记事本主要分为三个模块:文...

Python中的Classes和Metaclasses详解

类和对象 类和函数一样都是Python中的对象。当一个类定义完成之后,Python将创建一个“类对象”并将其赋值给一个同名变量。类是type类型的对象(是不是有点拗口?)。 类对象是可调...

python根据开头和结尾字符串获取中间字符串的方法

本文实例讲述了python根据开头和结尾字符串获取中间字符串的方法。分享给大家供大家参考。具体分析如下: 这里给定一个字符串,指定开头和结尾的字符串,返回中间包夹的字符串,比如: co...

Python中的__slots__示例详解

前言 相信Python老鸟都应该看过那篇非常有吸引力的Saving 9 GB of RAM with Python's slots 文章,作者使用了__slots__让内存占用从25.5...