Python实现Dijkstra算法

yipeiwu_com5年前Python基础

Dijkstra算法

迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

迪杰斯特拉算法是求从某一个起点到其余所有结点的最短路径,是一对多的映射关系,是一种贪婪算法

示例:

算法

算法实现流程思路:
迪杰斯特拉算法每次只找离起点最近的一个结点,并将之并入已经访问过结点的集合(以防重复访问,陷入死循环),然后将刚找到的最短路径的结点作为中间结点来更新相邻结点的路径长度,这样循环找到图中一个个结点的最短路径。

"""
输入
graph 输入的图
src 原点
返回
dis 记录源点到其他点的最短距离
path 路径
"""
import json
def dijkstra(graph,src):
  if graph ==None:
    return None
  # 定点集合
  nodes = [i for i in range(len(graph))] # 获取顶点列表,用邻接矩阵存储图
  # 顶点是否被访问
  visited = []
  visited.append(src)
  # 初始化dis
  dis = {src:0}# 源点到自身的距离为0
  for i in nodes:
    dis[i] = graph[src][i]
  path={src:{src:[]}} # 记录源节点到每个节点的路径
  k=pre=src
  while nodes:
    temp_k = k
    mid_distance=float('inf') # 设置中间距离无穷大
    for v in visited:
      for d in nodes:
        if graph[src][v] != float('inf') and graph[v][d] != float('inf'):# 有边
          new_distance = graph[src][v]+graph[v][d]
          if new_distance <= mid_distance:
            mid_distance=new_distance
            graph[src][d]=new_distance # 进行距离更新
            k=d
            pre=v
    if k!=src and temp_k==k:
      break
    dis[k]=mid_distance # 最短路径
    path[src][k]=[i for i in path[src][pre]]
    path[src][k].append(k)

    visited.append(k)
    nodes.remove(k)
    print(nodes)
  return dis,path
if __name__ == '__main__':
  # 输入的有向图,有边存储的就是边的权值,无边就是float('inf'),顶点到自身就是0
  graph = [ 
    [0, float('inf'), 10, float('inf'), 30, 100],
    [float('inf'), 0, 5, float('inf'), float('inf'), float('inf')],
    [float('inf'), float('inf'), 0, 50, float('inf'), float('inf')],
    [float('inf'), float('inf'), float('inf'), 0, float('inf'), 10],
    [float('inf'), float('inf'), float('inf'), 20, 0, 60],
    [float('inf'), float('inf'), float('inf'), float('inf'), float('inf'), 0]]
  dis,path= dijkstra(graph, 0) # 查找从源点0开始带其他节点的最短路径
  print(dis)
  print(json.dumps(path, indent=4))


总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

Python简单定义与使用二叉树示例

本文实例讲述了Python简单定义与使用二叉树的方法。分享给大家供大家参考,具体如下: class BinaryTree: def __init__(self,rootObj):...

Python利用PyExecJS库执行JS函数的案例分析

Python利用PyExecJS库执行JS函数的案例分析

  在Web渗透流程的暴力登录场景和爬虫抓取场景中,经常会遇到一些登录表单用DES之类的加密方式来加密参数,也就是说,你不搞定这些前端加密,你的编写的脚本是不可能...

python图像处理之镜像实现方法

python图像处理之镜像实现方法

本文实例讲述了python图像处理之镜像实现方法。分享给大家供大家参考。具体分析如下: 图像的镜像变化不改变图像的形状。图像的镜像变换分为三种:水平镜像、垂直镜像、对角镜像 设图像的大小...

python编程通过蒙特卡洛法计算定积分详解

python编程通过蒙特卡洛法计算定积分详解

想当初,考研的时候要是知道有这么个好东西,计算定积分。。。开玩笑,那时候计算定积分根本没有这么简单的。但这确实给我打开了一种思路,用编程语言去解决更多更复杂的数学问题。下面进入正题。...

python2.7到3.x迁移指南

目前,Python 科学栈中的所有主要项目都同时支持 Python 3.x 和 Python 2.7,不过,这种情况很快即将结束。去年 11 月,Numpy 团队的一份声明引发了数据科学...