对pandas中iloc,loc取数据差别及按条件取值的方法详解

yipeiwu_com6年前Python基础

Dataframe使用loc取某几行几列的数据:

print(df.loc[0:4,['item_price_level','item_sales_level','item_collected_level','item_pv_level']])

结果如下,取了index为0到4的五行四列数据。

  item_price_level item_sales_level item_collected_level item_pv_level
0     3     3      4    14
1     3     3      4    14
2     3     3      4    14
3     3     3      4    14
4     3     3      4    14

而使用iloc,如下所示:

print(df.iloc[0:4,6:9])

结果如下,取得是index为0到3四行,以及第6到8列(从0列开始)3列数据。

  item_price_level item_sales_level item_collected_level
0     3     3      4
1     3     3      4
2     3     3      4
3     3     3      4

另外loc可以按条件取数据:

print(df.loc[df.item_price_level==0,:])
print(df.loc[df[item_price_level]==0,:])

上面两条语句效果是一样的,都是取item_price_level为0的所有数据。可以把冒号改成几列列名,只取满足条件的某几列数据:

print(df.loc[df['item_price_level']==0,['item_price_level','item_sales_level']])

结果前两行如下:

   item_price_level item_sales_level
129141     0    10
129142     0    10

条件为多个时 (同时满足两个条件如下):

print(df.loc[(item_price_level==0) & (item_sales_level==3),:])
 

以上这篇对pandas中iloc,loc取数据差别及按条件取值的方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python遍历数组的方法小结

本文实例总结了python遍历数组的方法。分享给大家供大家参考。具体分析如下: 下面介绍两种遍历数组的方法,一种是直接通过for in 遍历数组,另外一种是通过rang函数先获得数组长度...

python 3调用百度OCR API实现剪贴板文字识别

本程序调用百度OCR API对剪贴板的图片文字识别,配合CaptureScreen软件,可快速识别文字。 #!python3 import urllib.request, urlli...

Pytorch 数据加载与数据预处理方式

Pytorch 数据加载与数据预处理方式

数据加载分为加载torchvision.datasets中的数据集以及加载自己使用的数据集两种情况。 torchvision.datasets中的数据集 torchvision.data...

Python 多进程并发操作中进程池Pool的实例

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的...

Python递归函数实例讲解

Python递归函数实例讲解

Python递归函数实例 1、打开Python开发工具IDLE,新建‘递归.py'文件,并写代码如下: def digui(n): if n == 0 : print...