对pandas数据判断是否为NaN值的方法详解

yipeiwu_com6年前Python基础

实际项目中有这样的需求,将某一列的值,映射成类别型的数据,这个时候,需要我们将范围等频切分,或者等距切分。

具体的做法可以先看某一些特征的具体分布情况,然后我们选择合适的阈值进行分割。

def age_map(x):
 if x < 26:
  return 0
 elif x >=26 and x <= 35:
  return 1
 elif x > 35 and x <= 45:
  return 2
 elif pd.isnull(x): #判断是否为NaN值,== 和in 都无法判断
  return 3
 else:
  return 4

也就是用pandas自带的函数来表示:

pd.isnull(x) 

最后我们可以应用map函数:

data['age'] = data['birth_year'].map(age_map)

以上这篇对pandas数据判断是否为NaN值的方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python判断Abundant Number的方法

本文实例讲述了Python判断Abundant Number的方法。分享给大家供大家参考。具体如下: Abundant Number,中文译成:盈数(又称 丰数, 过剩数abundant...

python 3利用Dlib 19.7实现摄像头人脸检测特征点标定

python 3利用Dlib 19.7实现摄像头人脸检测特征点标定

Python 3 利用 Dlib 19.7 实现摄像头人脸检测特征点标定 0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,进行实时特征点标定; 图1 工程效果示例(...

详解如何用OpenCV + Python 实现人脸识别

详解如何用OpenCV + Python 实现人脸识别

下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建。于是迫不及待的想体验一下opencv的人脸识别,如下文。 必备知识 Haar-like 通俗的来讲,...

python 读取数据库并绘图的实例

1.安装相应的库文件 sudo apt-get install python-mysqldb 2.数据库操作 import MySQLdb db = MySQLdb.con...

Python数据结构与算法之列表(链表,linked list)简单实现

Python 中的 list 并不是我们传统(计算机科学)意义上的列表,这也是其 append 操作会比 insert 操作效率高的原因。传统列表——通常也叫作链表(linked lis...