对pandas数据判断是否为NaN值的方法详解

yipeiwu_com5年前Python基础

实际项目中有这样的需求,将某一列的值,映射成类别型的数据,这个时候,需要我们将范围等频切分,或者等距切分。

具体的做法可以先看某一些特征的具体分布情况,然后我们选择合适的阈值进行分割。

def age_map(x):
 if x < 26:
  return 0
 elif x >=26 and x <= 35:
  return 1
 elif x > 35 and x <= 45:
  return 2
 elif pd.isnull(x): #判断是否为NaN值,== 和in 都无法判断
  return 3
 else:
  return 4

也就是用pandas自带的函数来表示:

pd.isnull(x) 

最后我们可以应用map函数:

data['age'] = data['birth_year'].map(age_map)

以上这篇对pandas数据判断是否为NaN值的方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python冲顶大会 快来答题!

身边的人竟然不玩“跳一跳了”,都迷上了一个叫“冲顶大会”的东西,考了很多各学科的冷知识,文学、数学、地理、生物、动漫、八卦…小编网上找到一些关于python试题,大家都来答题吧。 1、下...

使用Python的Bottle框架写一个简单的服务接口的示例

是不是有这么一个场景,对外提供一堆数据或者是要返回给用户一个结果。但是不想把内部的一些数据和逻辑暴露给对方。。。简单点来说,就是想以服务的方式对外提供一个接口。对于这种有很多处理方式,R...

如何利用python制作时间戳转换工具详解

前言: 时间戳的定义 Unix时间戳(Unix时间戳)或称Unix时间(Unix时间),POSIX时间(POSIX时间),是一种时间表示方式,定义为从格林威治时间1970年01月01日0...

numpy.transpose对三维数组的转置方法

如下所示: import numpy as np 三维数组 arr1 = np.arange(16).reshape((2, 2, 4)) #[[[ 0 1 2 3] #...

使用Python监控文件内容变化代码实例

利用seek监控文件内容,并打印出变化内容: #/usr/bin/env python #-*- coding=utf-8 -*- pos = 0 while True: c...