python训练数据时打乱训练数据与标签的两种方法小结

yipeiwu_com5年前Python基础

如下所示:

<code class="language-python">import numpy as np 
 
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]]) 
y = np.array([1,2,3,4,5])
 
print '-------第1种方法:通过打乱索引从而打乱数据,好处是1:数据量很大时能够节约内存,2每次都不一样----------' 
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]]) 
data_num, _= data.shape #得到样本数 
index = np.arange(data_num) # 生成下标 
np.random.shuffle(index) 
print '-------原数据:----------' 
print '数据:',data 
print '标签:', y
print '-------打乱数据:----------' 
print '数据:',data[index] 
print '标签:',y[index]

print '-------第2种方法:直接的打乱数据,利用随机数种子,好处:每次打乱的顺序是固定的----------' 
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]]) 
y = np.array([1,2,3,4,5])

print '-------原数据:----------' 
print '数据:',data 
print '标签:', y
print '-------打乱数据:----------' 
np.random.seed(116)
np.random.shuffle(data) 
np.random.seed(116)
np.random.shuffle(y) 
print '数据:',data 
print '标签:', y</code>

以上这篇python训练数据时打乱训练数据与标签的两种方法小结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Windows下的Jupyter Notebook 安装与自定义启动(图文详解)

Windows下的Jupyter Notebook 安装与自定义启动(图文详解)

【听图阁-专注于Python设计】小编注:如果不是特殊需要建议安装 Anaconda3 即可,自带Jupyter Notebook 。 手动安装之前建议查看这篇文章:/post/1351...

Django的session中对于用户验证的支持

用户与Authentication 通过session,我们可以在多次浏览器请求中保持数据, 接下来的部分就是用session来处理用户登录了。 当然,不能仅凭用户的一面之词,我们就相...

初步解析Python中的yield函数的用法

您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ? 我们先抛开 generator,以一个常见的编程题目来展示...

简单介绍Python中的readline()方法的使用

 readline()方法从文件中读取一整行。尾部的换行符保持在字符串中。如果大小参数且非负,那么一个最大字节数,包括结尾的换行和不完整的行可能会返回。 遇到EOF时立即返回一...

浅谈Python类里的__init__方法函数,Python类的构造函数

如果某类里没有__init__方法函数,通过类名字创建的实例对象为空,切没有初始化;如果有此方法函数,通常作为类的第一个方法函数,有点像C++等语言里的构造函数。 class Ca:...