python训练数据时打乱训练数据与标签的两种方法小结

yipeiwu_com6年前Python基础

如下所示:

<code class="language-python">import numpy as np 
 
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]]) 
y = np.array([1,2,3,4,5])
 
print '-------第1种方法:通过打乱索引从而打乱数据,好处是1:数据量很大时能够节约内存,2每次都不一样----------' 
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]]) 
data_num, _= data.shape #得到样本数 
index = np.arange(data_num) # 生成下标 
np.random.shuffle(index) 
print '-------原数据:----------' 
print '数据:',data 
print '标签:', y
print '-------打乱数据:----------' 
print '数据:',data[index] 
print '标签:',y[index]

print '-------第2种方法:直接的打乱数据,利用随机数种子,好处:每次打乱的顺序是固定的----------' 
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]]) 
y = np.array([1,2,3,4,5])

print '-------原数据:----------' 
print '数据:',data 
print '标签:', y
print '-------打乱数据:----------' 
np.random.seed(116)
np.random.shuffle(data) 
np.random.seed(116)
np.random.shuffle(y) 
print '数据:',data 
print '标签:', y</code>

以上这篇python训练数据时打乱训练数据与标签的两种方法小结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python数字图像处理之高级形态学处理

python数字图像处理之高级形态学处理

形态学处理,除了最基本的膨胀、腐蚀、开/闭运算、黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等。 1、凸包 凸包是指一个凸多边形,这个凸多边形将图片中所有的白...

pandas带有重复索引操作方法

有的时候,可能会遇到表格中出现重复的索引,在操作重复索引的时候可能要注意一些问题。 一、判断索引是否重复 a、Series索引重复判断 s = Series([1,2,3,4,5],...

浅谈Python中函数的定义及其调用方法

浅谈Python中函数的定义及其调用方法

一、函数的定义及其应用 所谓函数,就是把具有独立功能的代码块组织成为一个小模块,在需要的时候调用函数的使用包含两个步骤 1.定义函数–封装独立的功能 2.调用函数–享受封装的成果...

Python中sorted()排序与字母大小写的问题

今天我在练习python时,对字典里的键用sorted排序时发现并没有按照预期排序 研究后发现字母大小写会影响排序 首先创建一个字典,键里面的首字母有大写有小写 favorite_...

Python处理session的方法整理

Python处理session的方法整理

前言: 不管是在做接口自动化还是在做UI自动化,测试人员遇到的第一个问题都是卡在登录上。 那是因为在执行登录的时候,服务端会有一种叫做session的会话机制。 一个很简单的例子:...