python实现RabbitMQ的消息队列的示例代码

yipeiwu_com5年前Python基础

最近在研究redis做消息队列时,顺便看了一下RabbitMQ做消息队列的实现。以下是总结的RabbitMQ中三种exchange模式的实现,分别是fanout, direct和topic。

base.py:

import pika
# 获取认证对象,参数是用户名、密码。远程连接时需要认证
credentials = pika.PlainCredentials("admin", "admin")

# BlockingConnection(): 实例化连接对象
# ConnectionParameters(): 实例化链接参数对象
connection = pika.BlockingConnection(pika.ConnectionParameters(
  "192.168.0.102", 5672, "/", credentials))

# 创建新的channel(通道)
channel = connection.channel()

fanout模式:向绑定到指定exchange的queue中发送消息,消费者从queue中取出数据,类似于广播模式、发布订阅模式。
绑定方式: 在接收端channel.queue_bind(exchange="logs", queue=queue_name)

代码:

publisher.py:

from base import channel, connection
# 声明exchange, 不声明queue
channel.exchange_declare(exchange="logs", exchange_type="fanout") # 广播
message = "hello fanout"
channel.basic_publish(
  exchange="logs",
  routing_key="",
  body=message
)
connection.close()

consumer.py:

from base import channel, connection
    
# 声明exchange
channel.exchange_declare(exchange="logs", exchange_type="fanout")

# 不指定queue名字, rabbitmq会随机分配一个名字, 消息处理完成后queue会自动删除
result = channel.queue_declare(exclusive=True) 

# 获取queue名字
queue_name = result.method.queue

# 绑定exchange和queue
channel.queue_bind(exchange="logs", queue=queue_name)


def callback(ch, method, properties, body):
  print("body:%s" % body)


channel.basic_consume(
  callback,
  queue=queue_name
)


channel.start_consuming()

direct模式:发送端绑定一个routing_key1, queue中绑定若干个routing_key2, 若key1与key2相等,或者key1在key2中,则消息就会发送到这个queue中,再由相应的消费者去queue中取数据。

publisher.py:

from base import channel, connection
channel.exchange_declare(exchange="direct_test", exchange_type="direct")

message = "hello"

channel.basic_publish(
  exchange="direct_test",
  routing_key="info", # 绑定key
  body=message
)
connection.close()

consumer01.py:

from base import channel, connection
      
      
channel.exchange_declare(exchange="direct_test", exchange_type="direct")
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue


channel.queue_bind(
  exchange="direct_test",
  queue=queue_name,
  # 绑定的key,与publisher中的相同
  routing_key="info" 
)


def callback(ch, method, properties, body):
  print("body:%s" % body)


channel.basic_consume(
  callback,
  queue=queue_name
)


channel.start_consuming()

consumer02.py:

from base import channel, connection


channel.exchange_declare(exchange="direct_test", exchange_type="direct")
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue


channel.queue_bind(
  exchange="direct_test",
  queue=queue_name,
  # 绑定的key
  routing_key="error"  
)


def callback(ch, method, properties, bosy):
  print("body:%s" % body)


channel.basic_consume(
  callback,
  queue=queue_name
)


channel.start_consuming()

consumer03.py:

from base import channel, connection
      
      
channel.exchange_declare(exchange="direct_test", exchange_type="direct")
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue


key_list = ["info", "warning"]
for key in key_list:
  channel.queue_bind(
    exchange="direct_test",
    queue=queue_name,
    # 一个queue同时绑定多个key,有一个key满足条件时就可以收到数据
    routing_key=key 
  )


def callback(ch, method, properties, body):
  print("body:%s" % body)


channel.basic_consume(
  callback,
  queue=queue_name
)


channel.start_consuming()

执行:

python producer.py
python consumer01.py
python consumer02.py
python consumer03.py

结果:

consumer01.py: body:b'hello'
consumer02.py没收到结果
consumer03.py: body:b'hello'

topic模式不是太好理解,我的理解如下:

对于发送端绑定的routing_key1,queue绑定若干个routing_key2;若routing_key1满足任意一个routing_key2,则该消息就会通过exchange发送到这个queue中,然后由接收端从queue中取出其实就是direct模式的扩展。

绑定方式:

发送端绑定:

  channel.basic_publish(
    exchange="topic_logs",
    routing_key=routing_key,
    body=message
  )

接收端绑定:

  channel.queue_bind(
    exchange="topic_logs",
    queue=queue_name,
    routing_key=binding_key
  )

publisher.py:

import sys
from base import channel, connection


# 声明exchange
channel.exchange_declare(exchange="topic_test", exchange_type="topic")

# 待发送消息
message = " ".join(sys.argv[1:]) or "hello topic"

# 发布消息
channel.basic_publish(
  exchange="topic_test",
  routing_key="mysql.error",  # 绑定的routing_key
  body=message
)
connection.close()

consumer01.py:

from base import channel, connection
      
      
channel.exchange_declare(exchange="topic_test", exchange_type="topic")
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue


channel.queue_bind(
  exchange="topic_test",
  queue=queue_name,
  routing_key="*.error"  # 绑定的routing_key
)


def callback(ch, method, properties, body):
  print("body:%s" % body)


channel.basic_consume(
  callback,
  queue=queue_name,
  no_ack=True
)


channel.start_consuming()

consumer02.py:

from base import channel, connection
      
      
channel.exchange_declare(exchange="topic_test", exchange_type="topic")
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue


channel.queue_bind(
  exchange="topic_test",
  queue=queue_name,
  routing_key="mysql.*"  # 绑定的routing_key
)


def callback(ch, method, properties, body):
  print("body:%s" % body)


channel.basic_consume(
  callback,
  queue=queue_name,
  no_ack=True
)


channel.start_consuming()

执行:

python publisher02.py "this is a topic test"
python consumer01.py
python consumer02.py

结果:

consumer01.py的结果: body:b'this is a topic test'
consumer02.py的结果: body:b'this is a topic test'

说明通过绑定相应的routing_key,两个消费者都收到了消息

将publisher.py的routing_key改成"mysql.info"

再此执行:

python publisher02.py "this is a topic test"
python consumer01.py
python consumer02.py

结果:

consumer01.py没收到结果
consumer02.py的结果: body:b'this is a topic test'

通过这个例子我们就能明白topic的运行方式了。

参考自: /post/150386.htm

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python基于递归算法实现的汉诺塔与Fibonacci数列示例

Python基于递归算法实现的汉诺塔与Fibonacci数列示例

本文实例讲述了Python基于递归算法实现的汉诺塔与Fibonacci数列。分享给大家供大家参考,具体如下: 这里我们通过2个例子,学习python中递归的使用。 1. 找出Fibona...

浅谈django2.0 ForeignKey参数的变化

Django2.0中编写models类下的ForeignKey book = models.ForeignKey('BookInfo') django2.0与之前的1.8不同,...

python虚拟环境的安装配置图文教程

python虚拟环境的安装配置图文教程

使用pip安装     pip install virtualenv 因为已经安装过了,所以显示这样 在这里我想在这里推荐大家以后再安装类库时可以用豆瓣源来安装,速...

python中pandas.DataFrame对行与列求和及添加新行与列示例

本文介绍的是python中pandas.DataFrame对行与列求和及添加新行与列的相关资料,下面话不多说,来看看详细的介绍吧。 方法如下: 导入模块: from pandas i...

Pytorch之Variable的用法

1.简介 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Variable和tensor的区别和联系 Vari...