python/sympy求解矩阵方程的方法

yipeiwu_com6年前Python基础

sympy版本:1.2

假设求解矩阵方程

AX=A+2X

其中

python sympy求解矩阵方程

求解之前对矩阵方程化简为

(A−2E)X=A

B=(A−2E)

使用qtconsole输入下面程序进行求解

In [26]: from sympy import *

In [27]: from sympy.abc import *

In [28]: A=Matrix([[4,2,3],[1,1,0],[-1,2,3]])

In [29]: A
Out[29]: 
Matrix([
[ 4, 2, 3],
[ 1, 1, 0],
[-1, 2, 3]])

In [30]: B=A-2*diag(1,1,1)

In [31]: B
Out[31]: 
Matrix([
[ 2, 2, 3],
[ 1, -1, 0],
[-1, 2, 1]])

In [32]: B.inv()*A
Out[32]: 
Matrix([
[ 3, -8, -6],
[ 2, -9, -6],
[-2, 12, 9]])

将结果验证一下:

In [38]: X=B.inv()*A

In [39]: X
Out[39]: 
Matrix([
[ 3, -8, -6],
[ 2, -9, -6],
[-2, 12, 9]])

In [40]: A*X-A-2*X
Out[40]: 
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])

求解矩阵方程过程中注意的问题是左乘还是右乘问题,在此例中是B.inv()*A ,如果矩阵方程变为

XA=A+2X

那么求解结果为:

In [35]: X=A*B.inv()

In [36]: X
Out[36]: 
Matrix([
[ 3, -8, -6],
[ 2, -9, -6],
[-2, 12, 9]])

将结果验证一下:

X=A*B.inv()

X
Out[36]: 
Matrix([
[ 3, -8, -6],
[ 2, -9, -6],
[-2, 12, 9]])

X*A-A-2*X
Out[37]: 
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])

以上这篇python/sympy求解矩阵方程的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python对象类型及其运算方法(详解)

Python对象类型及其运算方法(详解)

基本要点: 程序中储存的所有数据都是对象(可变对象:值可以修改 不可变对象:值不可修改) 每个对象都有一个身份、一个类型、一个值 例: >>> a1 = 'abc...

NetworkX之Prim算法(实例讲解)

NetworkX之Prim算法(实例讲解)

引言 Prim算法与Dijkstra的最短路径算法类似,它采用贪心策略。算法开始先把图中权值最小的边添加到树T中,然后不断把权值最小的边E(E的一个端点在T中,另一个在G-T中)。当没有...

详解Python之数据序列化(json、pickle、shelve)

一、前言 1. 现实需求 每种编程语言都有各自的数据类型,其中面向对象的编程语言还允许开发者自定义数据类型(如:自定义类),Python也是一样。很多时候我们会有这样的需求: 把内...

跟老齐学Python之眼花缭乱的运算符

在计算机高级中语言,运算符是比较多样化的。其实,也都源于我们日常的需要。 算术运算符 前面已经讲过了四则运算,其中涉及到一些运算符:加减乘除,对应的符号分别是:+ - * /,此外,还有...

python实现装饰器、描述符

概要 本人python理论知识远达不到传授级别,写文章主要目的是自我总结,并不能照顾所有人,请见谅,文章结尾贴有相关链接可以作为补充 全文分为三个部分装饰器理论知识、装饰器应用、装饰器...