对pandas的行列名更改与数据选择详解

yipeiwu_com6年前Python基础

记录一些pandas选择数据的内容,此前首先说行列名的获取和更改,以方便获取数据。此文作为学习巩固。

这篇博的内容顺序大概就是: 行列名的获取 —> 行列名的更改 —> 数据选择

一、pandas的行列名获取和更改

1. 获取: df.index() df.columns()

首先,举个例子,做一个DataFrame如下:

>>>import pandas as pd
>>>import numpy as np
>>>data = pd.DataFrame({'a':[1,2,3],'b':[4,5,6],'c':[7,8,9]})
>>>data

pandas 行列名更改与数据选择

设置了列索引为 abc,行索引是自动生成的,也可以设置

>>>data.index = ['A','B','C']
>>>data

pandas 行列名更改与数据选择

以下的做法都以这个 data 作为数据举例

接下来就可以获取索引了,index-行索引,columns-列索引

>>>data.index

pandas 行列名更改与数据选择

>>>data.columns

pandas 行列名更改与数据选择

2. 修改,看到有很多方法,这里推荐一种比较灵活好用的方法

 df.rename(index={ }, columns={ }, inplace=True)
>>>data.rename(index={'A':'D', 'B':'E', 'C':'F'}, columns={'a':'d', 'b':'e', 'c':'f'}, inplace = True)
>>>data

pandas 行列名更改与数据选择

说明3点:

1. index和columns无关,可以分别指定,也就是说,可以只修改行索引,那么rename()中只写index

2. 索引可以任意挑选,如此处,index={'A':'D', 'C':'F'} 则只改A和C,columns同样

3. inplace=True, 在原dataframe上改动

二、pandas的数据选择

1. 直接用索引选(不灵活、不推荐) df[ ]

1) 选择‘a'列

>>>data['a'] 

pandas 行列名更改与数据选择

注意:

1. 这样取出的数据类型为 Series

2. 这种方法只能取出一列,不能用数字下标,不能多选或片选, data['a','b'] , data['a':'c'] , data[0]

2)选择'A','B'行

>>>data['A':'B'] 
>>>data[0:2] # 两种方法同一结果

pandas 行列名更改与数据选择

注意:

1. 这样取出的数据类型为 DateFrame

2. 这种方法只能用于片选行,可以用数字下标,不能单独取,即 data['A'] , data['A','B'] , data[1]

2.使用 .loc(推荐) df.loc(),()内参数先行后列,区别行列的取法

1) 取列:

>>>data.loc[:,['a','c']] #图1 需要行全取,再对应指定列

2)取行:

>>>data.loc[['A','B']] #图2 直接指定行

3)取行列交叉值:

>>>data.loc[['A'],['b','c']] #图3 

pandas 行列名更改与数据选择

注意:

1. 区别 df.iloc()

.loc() —— 使用标签 label 作为索引取值

.iloc() —— 使用整数下标 index 作为索引取值,如上面三句可以换成以下三句,输出数据类型有不同

>>>data.iloc[:,[0,2]] # DataFrame
>>>data.iloc[[0,1]] # DataFrame
>>>data.iloc[0,[1,2]] # Series

2. 对于 数字类型的变量,可以使用bool 选取行,列不能用bool,如

>>>data.loc[data.b>5] # DataFrame

pandas 行列名更改与数据选择

>>>data.loc[data.b>5,['c']] #DataFrame 输出为9位置的frame
>>>data.iloc[data.b.values>5,[2]] #DataFrame 输出同上,需要有 .values取值

3. .ix[ ] 可以混用label和index,位置使用同 .loc[ ] .iloc[ ]

以上这篇对pandas的行列名更改与数据选择详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现的读取电脑硬件信息功能示例

本文实例讲述了Python实现的读取电脑硬件信息功能。分享给大家供大家参考,具体如下: 上学那会,老师让我用java获取电脑硬件信息,CPU, 硬盘,MAC等,那个时候感觉搞了好久。。。...

python 实现求解字符串集的最长公共前缀方法

问题比较简单,给定一个字符串集合求解其中最长的公共前缀即可,这样的问题有点类似于最长公共子序列的问题,但是比求解最长最长公共子序列简单很多,因为是公共前缀,这样的话只需要挨个遍历即可,只...

使用Python生成XML的方法实例

本文实例讲述了使用Python生成XML的方法。分享给大家供大家参考,具体如下: 1. bookstore.py #encoding:utf-8 ''' 根据一个给定的XML Sch...

django admin 后台实现三级联动的示例代码

在刚进公司的时候,要写一个需求,使用django的admin站点管理,实现一个二级联动的功能,因为要用到django自带的页面,因为不是自定义的,不能直接添加js代码。根据我自己的研究简...

django 捕获异常和日志系统过程详解

这一块的内容很少, 异常使用try except即可, 日志只需要几行配置. 使用装饰器捕获方法内的所有异常 我使用装饰器来整个包裹一个方法, 捕获方法中的所有异常信息.并将其转为j...