Pandas GroupBy对象 索引与迭代方法

yipeiwu_com6年前Python基础

如下所示:

import pandas as pd
df = pd.DataFrame({'性别' : ['男', '女', '男', '女',
        '男', '女', '男', '男'],
      '成绩' : ['优秀', '优秀', '及格', '差',
        '及格', '及格', '优秀', '差'],
      '年龄' : [15,14,15,12,13,14,15,16]})
GroupBy=df.groupby("性别")

GroupBy.iter()

GroupBy对象是一个迭代对象,每次迭代结果是一个元组,元组的第一个元素是该组的名称(就是groupby的列的元素名称),第二个元素是该组的具体信息,是一个数据框,索引是以前的数据框的总索引

for name,group in GroupBy:
 print(name)
 print(group)
女
 年龄 性别 成绩
1 14 女 优秀
3 12 女 差
5 14 女 及格
男
 年龄 性别 成绩
0 15 男 优秀
2 15 男 及格
4 13 男 及格
6 15 男 优秀
7 16 男 差

GroupBy.groups

显示分组的组名,以及所对应的索引

print(GroupBy.groups)
{'女': Int64Index([1, 3, 5], dtype='int64'), '男': Int64Index([0, 2, 4, 6, 7], dtype='int64')}

GroupBy.indices

类似于GroupBy.groups

print(GroupBy.indices)
{'女': array([1, 3, 5], dtype=int64), '男': array([0, 2, 4, 6, 7], dtype=int64)}

GroupBy.get_group(name[, obj])

获得某一个分组的具体信息

In [2]: GroupBy.get_group("男")
Out[2]: 
 年龄 性别 成绩
0 15 男 优秀
2 15 男 及格
4 13 男 及格
6 15 男 优秀
7 16 男 差

Grouper([key, level, freq, axis, sort])

应用

可以先通过循环获得所有的组的名称

for name in GroupBy:
 print(name)# 获得所有分组的名称
 GroupBy.get_group(name) #获得所有该名称的数据

以上这篇Pandas GroupBy对象 索引与迭代方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python dataframe 输出结果整行显示的方法

在使用dataframe时遇到datafram在列太多的情况下总是自动换行显示的情况,导致数据阅读困难,效果如下: # -*- coding: utf-8 -*- import nu...

Python for Informatics 第11章之正则表达式(二)

注:以下文章原文来自于Dr Charles Severance 的 《Python for Informatics》 11.1 正则表达式的字符匹配   我们可以用许多其它的特殊字符...

基于numpy.random.randn()与rand()的区别详解

numpy 中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中。 numpy.random.randn(d0, d1, …, dn) 是从标准正态分布中返回一个...

python+selenium打印当前页面的titl和url方法

dr.title //获取页面title dr.current_url // 获取页面url 代码如下: from selenium import webdriver dr = w...

python2与python3中关于对NaN类型数据的判断和转换方法

python2与python3中关于对NaN类型数据的判断和转换方法

今天在对一堆新数据进行数据清洗的时候,遇到了一个这样的问题: ValueError: cannot convert float NaN to integer 一开始是这样的,我用...