python的concat等多种用法详解

yipeiwu_com5年前Python基础

本文为大家分享了python的concat等多种用法,供大家参考,具体内容如下

1、numpy中的concatenate()函数:

>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],
    [3, 4],
    [5, 6]])
>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],
    [3, 4, 6]])

2、pandas中的merge,concat,join

# In[]:数据的合并
# 1 ,merge,类似数据库中的
# (1)内连接,pd.merge(a1, a2, on='key')
# (2)左连接,pd.merge(a1, a2, on='key', how='left')
# (3)右连接,pd.merge(a1, a2, on='key', how='right')
# (4)外连接, pd.merge(a1, a2, on='key', how='outer')
data1 = pd.DataFrame(
  np.arange(0,16).reshape(4,4),
  columns=list('abcd')
)
data1
data2 = [
  [4,1,5,7],
  [6,5,7,1],
  [9,9,123,129],
  [16,16,32,1]
]
data2 = pd.DataFrame(data2,columns = ['a','b','c','d'])
data2
# 内连接 ,交集
pd.merge(data1,data2,on=['b'])
# 左连接 注意:如果 on 有两个条件,on = ['a','b']
# how = 'left','right','outer'
pd.merge(data1,data2,on='b',how='left')
 
# 2,append,相当于R中的rbind
# ignore_index = True:这个时候 表示index重新记性排列,而且这种方法是复制一个样本
data1.append(data2,ignore_index = True)
 
# 3,join
data2.columns=list('pown')
# 列名不能重叠:在这里的用法和R中rbind很像,但是join的用法还是相对麻烦的
result = data1.join(data2)
result
 
# 4,concat 这个方法能够实现上面所有的方法的效果
# concat函数是pandas底下的方法,可以把数据根据不同的轴进行简单的融合
# pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
#    keys=None, levels=None, names=None, verify_integrity=False)
 
# 参数说明:
# objs:series,dataframe,或者panel构成的序列list
# axis:0 行,1列
# join:inner,outer
 
# a,相同字段表首尾巴相接
data1.columns = list('abcd')
data2.columns =list('abcd')
data3 = data2
# 为了更好的查看连接后的数据来源,添加一个keys更好查看
pd.concat([data1,data2,data3],keys=['data1','data2','data3'])
 
# b ,列合并(也就是行对齐):axis = 1,
 
pd.concat([data1,data2,data3],axis = 1,keys = ['data1','data2','data3'])
 
data4 = data3[['a','b','c']]
# 在有些数据不存在的时候,会自动填充NAN
pd.concat([data1,data4])
 
# c:join:inner 交集,outer ,并集
pd.concat([data1,data4],join='inner')
 
# 在列名没有一个相同的时候会报错
# data4.index = list('mnp')
# pd.concat([data1,data4])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

关于python字符串方法分类详解

关于python字符串方法分类详解

python字符串方法分类,字符串是经常可以看到的一个数据储存类型,我们要进行字符的数理,就需要用各种的方法,这里有许多方法,我给大家介绍比较常见的重要的方法,比如填充、删减、变形、分切...

python运用pygame库实现双人弹球小游戏

python运用pygame库实现双人弹球小游戏

使用python pygame库实现一个双人弹球小游戏,两人分别控制一个左右移动的挡板用来拦截小球,小球会在两板间不停弹跳,拦截失败的一方输掉游戏,规则类似于简化版的乒乓球。 因为是第一...

python cumsum函数的具体使用

这个函数的功能是返回给定axis上的累计和函数的原型如下:详见 doc  numpy.cumsum(a, axis=None, dtype=None, out=None) &n...

Python多进程分块读取超大文件的方法

本文实例讲述了Python多进程分块读取超大文件的方法。分享给大家供大家参考,具体如下: 读取超大的文本文件,使用多进程分块读取,将每一块单独输出成文件 # -*- coding:...

基于Django框架的权限组件rbac实例讲解

基于Django框架的权限组件rbac实例讲解

1.基于rbac的权限管理 RBAC(Role-Based Access Control,基于角色的访问控制),就是用户通过角色与权限进行关联。简单地说,一个用户拥有若干角色,一个角色拥...