Python数据集切分实例

yipeiwu_com6年前Python基础

在处理数据过程中经常要把数据集切分为训练集和测试集,因此记录一下切分代码。

'''
data:数据集
test_ratio:测试机占比
如果data为numpy.numpy.ndarray直接使用此代码
如果data为pandas.DatFrame类型则
  return data[train_indices],data[test_indices]
修改为
  return data.iloc[train_indices],data.iloc[test_indices]
'''
def split_train(data,test_ratio):
  shuffled_indices=np.random.permutation(len(data))
  test_set_size=int(len(data)*test_ratio)
  test_indices =shuffled_indices[:test_set_size]
  train_indices=shuffled_indices[test_set_size:]
  return data[train_indices],data[test_indices]

测试代码如下:

import numpy as np
import pandas as pd
data=np.random.randint(100,size=[25,4])
print(data)

结果如下:

Python数据集切分

Python数据集切分

从上图可以看出,原数据集按照5:1被随机分为两部分。但是此种方法存在一个缺点–每次调用次函数切分同一个数据集切分出来的结果都不一样,因此常在np.random.permutation(len(data))先调用np.random.seed(int)函数,来确保每次切分来的结果相同。

因此将上述函数改为:

def split_train(data,test_ratio):
  np.random.seed(43)
  shuffled_indices=np.random.permutation(len(data))
  test_set_size=int(len(data)*test_ratio)
  test_indices =shuffled_indices[:test_set_size]
  train_indices=shuffled_indices[test_set_size:]
  return data[train_indices],data[test_indices]

这个函数np.random.seed(43)当参数为同一整数时产生的随机数相同。

以上这篇Python数据集切分实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django Admin中增加导出Excel功能过程解析

Django Admin中增加导出Excel功能过程解析

在使用Django Admin时, 对于列表我们有时需要提供数据导出功能, 如下图: 增加导出Excel功能 在Django Admin中每个模型的Admin类(继承至admin.M...

详解python做UI界面的方法

详解python做UI界面的方法

一直以来都是用python脚本,执行的时候就是在终端直接命令执行,或者直接输入代码执行,最近为了方便他人使用,想做个界面,可以通过里面的控件菜单直接点击执行程序功能。 在文件夹中创建一...

详解python中的 is 操作符

大家可以与Java中的 == 操作符相互印证一下,加深一下对引用和对象的理解。原问题: Python为什么直接运行和在命令行运行同样语句但结果却不同,他们的缓存机制不同吗? 其实...

深入理解python try异常处理机制

深入理解python try异常处理机制 #python的try语句有两种风格 #一:种是处理异常(try/except/else) #二:种是无论是否发生异常都将执行最后的代码(t...

django的ORM模型的实现原理

ORM模型介绍 随着项目越来越大,采用写原生SQL的方式在代码中会出现大量的SQL语句,那么问题就出现了: SQL语句重复利用率不高,越复杂的SQL语句条件越多,代码越长。会出现...