python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python输入二维数组方法

前不久对于Python输入二维数组有些不解,今日成功尝试,记以备忘。这里以输入1-9,3*3矩阵为例 n=int(input()) line=[[0]*n]*n for i in r...

Python实现将目录中TXT合并成一个大TXT文件的方法

本文实例讲述了Python实现将目录中TXT合并成一个大TXT文件的方法。分享给大家供大家参考。具体如下: 在网上下了一个dota的英雄攻略,TXT格式,每个英雄一个文件,看得疼,就写了...

python tensorflow学习之识别单张图片的实现的示例

python tensorflow学习之识别单张图片的实现的示例

假设我们已经安装好了tensorflow。 一般在安装好tensorflow后,都会跑它的demo,而最常见的demo就是手写数字识别的demo,也就是mnist数据集。 然而我们仅仅是...

深入了解Python中pop和remove的使用方法

Python关于删除list中的某个元素,一般有两种方法,pop()和remove()。 remove() 函数用于移除列表中某个值的第一个匹配项。 remove()方法语法: list...

python同时遍历数组的索引和值的实例

你想在迭代一个序列的同时跟踪正在被处理的元素索引。 获取索引 内置的 enumerate() 函数可以很好的解决这个问题: >>> my_list = ['a',...