python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

仅利用30行Python代码来展示X算法

假如你对数独解法感兴趣,你可能听说过精确覆盖问题。给定全集 X 和 X 的子集的集合 Y ,存在一个 Y 的子集 Y*,使得 Y* 构成 X 的一种分割。 这儿有个Python写的例子。...

wxPython实现带颜色的进度条

wxPython实现带颜色的进度条

本文实例为大家分享了wxPython实现带颜色进度条的具体代码,供大家参考,具体内容如下 【问题描述】 1、在使用wxpython创建进度条时遇到如下问题,使用SetForeground...

Python自动化测试ConfigParser模块读写配置文件

Python自动化测试ConfigParser模块读写配置文件 ConfigParser 是Python自带的模块, 用来读写配置文件, 用法及其简单。 直接上代码,不解释,不多说。 配...

python 3.5下xadmin的使用及修复源码bug

python 3.5下xadmin的使用及修复源码bug

前言 xadmin是一个django的管理后台实现,使用了更加灵活的架构设计及Bootstrap UI框架, 目的是替换现有的admin,国人开发,有许多新的特性:  &nb...

对Python3 序列解包详解

Python 中有很多很实用的语法糖,这些语法糖可以帮助我们简化代码、更易理解等优点,接下里再看一个 Python3 中特别实用的语法序列解包(序列解包是 Python 3.0 之后才有...