python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现批量检测HTTP服务的状态

Python实现批量检测HTTP服务的状态

用Python实现批量测试一组url的可用性(可以包括HTTP状态、响应时间等)并统计出现不可用情况的次数和频率等。 类似的,这样的脚本可以判断某个服务的可用性,以及在众多的服务提供者中...

python自动登录12306并自动点击验证码完成登录的实现源代码

以下代码可自动登录12306 - 包括输入用户名密码以及自动识别验证码并点击验证码登陆。该源码需要稍作修改: 把  username.send_keys('xxxxxxx')&...

探究Python的Tornado框架对子域名和泛域名的支持

其实Tornado对子域名和泛域名(除了特别说明外,以下子域名和泛域名均简称为泛域名)的支持并不是什么新鲜事,两年多前我用Tornado写的开源网站 http://poweredsite...

在Docker上部署Python的Flask框架的教程

本文中,我将尝试展示用Docker开发python应用(主要是Web应用)的可行方法。虽然我本人专注于Python的Flask微框架,但本文目的是演示如何通过Docker更好地开发和共享...

详解Python中的正斜杠与反斜杠

首先,"/"左倾斜是正斜杠,"\"右倾斜是反斜杠,可以记为:除号是正斜杠一般来说对于目录分隔符,Unix和Web用正斜杠/,Windows用反斜杠,但是现在Windows (一)目录中...