python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 自动刷博客浏览量实例代码

思路来源 今天很偶然的一个机会,听到别人在谈论现在的“刷量”行为,于是就激发了我的好奇心。然后看了下requests模块正好对我有用,就写了一个简单的测试用例。神奇的发现这一招竟然是管用...

Python编程学习之如何判断3个数的大小

前言 大部分初学编程的人来说刚开始都会练习判断两个数或者三个数的大小,来熟悉某种语言的特性和最基本的if,else循环,当我们学习了更高级的语法知识后,又会有不同的实现方式,比如这道练习...

python处理大日志文件

本文实例为大家分享了python处理大日志文件的具体代码,供大家参考,具体内容如下 # coding=utf-8 import sys import time class Ta...

python3实现二叉树的遍历与递归算法解析(小结)

python3实现二叉树的遍历与递归算法解析(小结)

1、二叉树的三种遍历方式 二叉树有三种遍历方式:先序遍历,中序遍历,后续遍历 即:先中后指的是访问根节点的顺序 eg:先序 根左右 中序 左根右 后序 左右根 遍历总体思路:将树分成最小...

TensorFlow实现简单的CNN的方法

TensorFlow实现简单的CNN的方法

这里,我们将采用Tensor Flow内建函数实现简单的CNN,并用MNIST数据集进行测试 第1步:加载相应的库并创建计算图会话 import numpy as np import...