python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Golang与python线程详解及简单实例

Golang与python线程详解及简单实例 在GO中,开启15个线程,每个线程把全局变量遍历增加100000次,因此预测结果是 15*100000=1500000. var sum...

python中for循环变量作用域及用法详解

在讲这个话题前,首先我们来看一道题: 代码1: def foo(): return [lambda x: x**i for i in range(1,5,2)] print([f...

用Python将结果保存为xlsx的方法

如下所示: #!/usr/bin/python # -*- coding:utf8 -*- import xlwt import os workbook=xlwt.Workbook...

python Event事件、进程池与线程池、协程解析

Event事件 用来控制线程的执行 出现e.wait(),就会把这个线程设置为False,就不能执行这个任务; 只要有一个线程出现e.set(),就会告诉Event对象,把有e.wai...

python使用PIL和matplotlib获取图片像素点并合并解析

python使用PIL和matplotlib获取图片像素点并合并解析

python 版本 3.x 首先安装 PIL 由于PIL仅支持到Python 2.7,加上年久失修,于是一群志愿者在PIL的基础上创建了兼容的版本,名字叫Pillow,支持最新Pytho...