python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python GUI图形化编程wxpython的使用

python GUI图形化编程wxpython的使用

一、python gui(图形化)模块介绍:   Tkinter :是python最简单的图形化模块,总共只有14种组建   Pyqt :是python最复杂也是使用最广泛的图形化   ...

python赋值操作方法分享

一、序列赋值: x,y,z = 1,2,3 我们可以看作:x = 1,y = 2,z = 3 二、链接赋值: x = y = 1print id(x)print id(y) 大家可以看下...

Ruby元编程基础学习笔记整理

笔记一: 代码中包含变量,类和方法,统称为语言构建(language construct)。 # test.rb class Greeting def initialize(te...

Python编程中用close()方法关闭文件的教程

 close()方法方法关闭打开的文件。关闭的文件无法读取或写入更多东西。文件已被关闭之后任何操作会引发ValueError。但是调用close()多次是可以的。 Python...

基于python的BP神经网络及异或实现过程解析

基于python的BP神经网络及异或实现过程解析

BP神经网络是最简单的神经网络模型了,三层能够模拟非线性函数效果。 难点: 如何确定初始化参数? 如何确定隐含层节点数量? 迭代多少次?如何更快收敛? 如何获得全局最...