python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python简单实现刷新智联简历

python来写一个试试吧,这里使用了cPAMIE模块,代码如下: 代码 from cPAMIE import PAMIE ie=PAMIE("www.zhaopin.com"...

win10系统Anaconda和Pycharm的Tensorflow2.0之CPU和GPU版本安装教程

win10系统Anaconda和Pycharm的Tensorflow2.0之CPU和GPU版本安装教程

tf2.0的三个优点: 1、方便搭建网络架构; 2、自动求导 3、GPU加速(便于大数据计算) 安装过程(概要提示) step1:安装annaconda3 step2:安装pycharm...

PyCharm+PySpark远程调试的环境配置的方法

PyCharm+PySpark远程调试的环境配置的方法

前言:前两天准备用 Python 在 Spark 上处理量几十G的数据,熟料在利用PyCharm进行PySpark远程调试时掉入深坑,特写此博文以帮助同样深处坑中的bigdata&mac...

Python的socket模块源码中的一些实现要点分析

BaseServer 和 BaseRequestHandler Python为网络编程提高了更高级的封装。SocketServer.py 提供了不少网络服务的类。它们的设计很优雅。Pyt...

PyQt弹出式对话框的常用方法及标准按钮类型

PyQt弹出式对话框的常用方法及标准按钮类型

PyQt之弹出式对话框(QMessageBox)的常用方法及标准按钮类型 一、控件说明 QMessageBox是一种通用的弹出式对话框,用于显示消息,允许用户通过单击不同的标准按钮对消息...