python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现数通设备端口监控示例

最近因工作需要,上面要求,每天需上报运维的几百数通设备端口使用情况【】,虽然有现成网管监控工具监控设备状态,但做报表,有点不方便,特写了个小脚本。注:测试运行于ubuntn,需安装snm...

Python循环实现n的全排列功能

描述: 输入一个大于0的整数n,输出1到n的全排列: 例如: n=3,输出[[3, 2, 1], [2, 3, 1], [2, 1, 3], [3, 1, 2], [1, 3, 2]...

Python实现操纵控制windows注册表的方法分析

本文实例讲述了Python实现操纵控制windows注册表的方法。分享给大家供大家参考,具体如下: 使用_winreg模块的话 基本概念: KEY 键 Value 值 函数和...

Python实现读取SQLServer数据并插入到MongoDB数据库的方法示例

本文实例讲述了Python实现读取SQLServer数据并插入到MongoDB数据库的方法。分享给大家供大家参考,具体如下: # -*- coding: utf-8 -*- impo...

Python机器学习之SVM支持向量机

Python机器学习之SVM支持向量机

SVM支持向量机是建立于统计学习理论上的一种分类算法,适合与处理具备高维特征的数据集。 SVM算法的数学原理相对比较复杂,好在由于SVM算法的研究与应用如此火爆,CSDN博客里也有大量的...