python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

从0开始的Python学习014面向对象编程(推荐)

从0开始的Python学习014面向对象编程(推荐)

简介 到目前为止,我们的编程都是根据数据的函数和语句块来设计的,面向过程的编程。还有一种我们将数据和功能结合起来使用对象的形式,使用它里面的数据和方法这种方法叫做面向对象的编程。 类和对...

Python 静态方法和类方法实例分析

Python 静态方法和类方法实例分析

本文实例讲述了Python 静态方法和类方法。分享给大家供大家参考,具体如下: 1. 类属性、实例属性 它们在定义和使用中有所区别,而最本质的区别是内存中保存的位置不同, 实例属性属于对...

python交易记录整合交易类详解

python交易记录整合交易类详解

接着上一篇,这里继续整合交易类。 import datetime #交易类,后期需要整合公钥,私钥 class Transaction: #payer 付款方,receiver收...

Python数据结构与算法之图的广度优先与深度优先搜索算法示例

本文实例讲述了Python数据结构与算法之图的广度优先与深度优先搜索算法。分享给大家供大家参考,具体如下: 根据维基百科的伪代码实现: 广度优先BFS: 使用队列,集合 标记初始结点已被...

python字典序问题实例

本文实例讲述了python字典序问题,分享给大家供大家参考。具体如下: 问题描述: 将字母从左向右的次序与字母表中的次序相同,且每个字符最大出现一次..例如:a,b,ab,bc,xyz等...