python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中shutil模块的常用文件操作函数用法示例

os模块提供了对目录或者文件的新建/删除/查看文件属性,还提供了对文件以及目录的路径操作。比如说:绝对路径,父目录……  但是,os文件的操作还应该包含移动 复制 ...

pyv8学习python和javascript变量进行交互

python取得javascript里面的值 复制代码 代码如下:import PyV8 with PyV8.JSContext() as env1:   ...

python 拷贝特定后缀名文件,并保留原始目录结构的实例

如下所示: #!/usr/bin/python # -*- coding: UTF-8 -*- import os import shutil def cp_tree_ext(ex...

Python3 使用cookiejar管理cookie的方法

这次我们使用cookiejar来完成一个登录学校model平台,并查看登陆后的其他页面的任务 from urllib import request from urllib impor...

如何利用python给图片添加半透明水印

如何利用python给图片添加半透明水印

前言 本文主要给大家介绍了关于python图片添加半透明水印的相关资料,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧 示例代码: # coding:utf-8 f...