python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现快速排序的方法详解

本文实例讲述了Python实现快速排序的方法。分享给大家供大家参考,具体如下: 说起快排的Python实现,首先谈一下,快速排序的思路: 1、取一个参考值放到列表中间,初次排序后,让左侧...

跟老齐学Python之玩转字符串(3)

字符串就是一个话题中心。 给字符串编号 在很多很多情况下,我们都要对字符串中的每个字符进行操作(具体看后面的内容),要准确进行操作,必须做的一个工作就是把字符进行编号。比如一个班里面有5...

Python3日期与时间戳转换的几种方法详解

日期和时间的相互转换可以利用Python内置模块 time 和 datetime 完成,且有多种方法供我们选择,当然转换时我们可以直接利用当前时间或指定的字符串格式的时间格式。 获取当前...

使用pytorch完成kaggle猫狗图像识别方式

使用pytorch完成kaggle猫狗图像识别方式

kaggle是一个为开发商和数据科学家提供举办机器学习竞赛、托管数据库、编写和分享代码的平台,在这上面有非常多的好项目、好资源可供机器学习、深度学习爱好者学习之用。 碰巧最近入门了一门非...

python之virtualenv的简单使用方法(必看篇)

什么是virtualenv? virtualenv可以创建独立Python开发环境,比如当前的全局开发环境是python3.6,现在我们有一个项目需要使用django1.3,另一个项目需...