浅谈Pandas:Series和DataFrame间的算术元素

yipeiwu_com6年前Python基础

如下所示:

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

一、Series与Series

s1 = Series([1,3,5,7],index=['a','b','c','d'])
s2 = Series([2,4,6,8],index=['a','b','c','e'])

索引对齐项相加,不对齐项的值取NaN

s1+s2
1
a  3.0
b  7.0
c 11.0
d  NaN
e  NaN
dtype: float64

二、DataFrame与DataFrame

data1 = {'水果':['苹果','梨','草莓'],
  '数量':[3,2,5],
  '价格':[10,9,8]}
data2 = {'数量':[3,2,5,6],
  '价格':[10,9,8,7]}
df1 = DataFrame(data1)
df2 = DataFrame(data2)

在行和列上同时对齐后进行计算,如果找不到对应项则取NaN

print(df1*df2)
  价格 数量 水果
0 100.0 9.0 NaN
1 81.0 4.0 NaN
2 64.0 25.0 NaN
3 NaN NaN NaN

三、Series与DataFrame

1.利用广播实现DataFrame与某行的运算

print(df2+df2.iloc[0]) # 将第0行加到所有行上
 价格 数量
0 20 6
1 19 5
2 18 8
3 17 9

2.利用广播实现DataFrame与某列的运算(指定轴axis=0)

print(df2.sub(df2.iloc[:,0],axis=0))
 价格 数量
0 0 -7
1 0 -7
2 0 -3
3 0 -1

3.运算时如果无法对齐,则填充NaN

s = Series([1,1,1],index=['数量','价格','重量'])
print(df2+s)
 价格 数量 重量
0 11 4 NaN
1 10 3 NaN
2 9 6 NaN
3 8 7 NaN

以上这篇浅谈Pandas:Series和DataFrame间的算术元素就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python Tkinter GUI编程入门介绍

Python Tkinter GUI编程入门介绍

一、Tkinter介绍 Tkinter是一个python模块,是一个调用Tcl/Tk的接口,它是一个跨平台的脚本图形界面接口。Tkinter不是唯一的python图形编程接口,但是是其中...

Python3实现从文件中读取指定行的方法

本文实例讲述了Python3实现从文件中读取指定行的方法。分享给大家供大家参考。具体实现方法如下: # Python的标准库linecache模块非常适合这个任务 import li...

Django中对数据查询结果进行排序的方法

在你的 Django 应用中,你或许希望根据某字段的值对检索结果排序,比如说,按字母顺序。 那么,使用 order_by() 这个方法就可以搞定了。 >>> Pub...

python学生管理系统代码实现

本文实例为大家分享了python学生管理系统的具体代码,供大家参考,具体内容如下 类 class Student: stuID = "" name = "" sex =...

python使用tkinter库实现五子棋游戏

python使用tkinter库实现五子棋游戏

本文实例为大家分享了python实现五子棋游戏的具体代码,供大家参考,具体内容如下 一、运行截图: 二、代码 # 用数组定义一个棋盘,棋盘大小为 15×15 # 数组索引代表...