Python计算库numpy进行方差/标准方差/样本标准方差/协方差的计算

yipeiwu_com6年前Python基础

使用numpy可以做很多事情,在这篇文章中简单介绍一下如何使用numpy进行方差/标准方差/样本标准方差/协方差的计算。

variance: 方差

方差(Variance)是概率论中最基础的概念之一,它是由统计学天才罗纳德·费雪1918年最早所提出。用于衡量数据离散程度,因为它能体现变量与其数学期望(均值)之间的偏离程度。具有相同均值的数据,而标准差可能不同,而通过标准差的大小则能更好地反映出数据的偏离度。

计算:一组数据1,2,3,4,其方差应该是多少?

计算如下:

均值=(1+2+3+4)/4=2.5
方差=((1-2.5)^2 + (2-2.5)^2 + (3-2.5)^2 +(4-2.5)^2)/4 = (2.25+0.25+0.25+2.25)/4 = 1.25

python的numpy库中使用var函数即可求解,代码&执行如下:

liumiaocn:tmp liumiao$ cat np-5.py 
#!/usr/local/bin/python
import numpy as np
arr = np.array([1,2,3,4])
print("variance of [1,2,3,4]:", np.var(arr))
liumiaocn:tmp liumiao$ python np-5.py 
('variance of [1,2,3,4]:', 1.25)
liumiaocn:tmp liumiao$ 

standard deviation: 标准偏差

标准偏差=方差的开放,所以:

计算: 一组数据1,2,3,4,其标准偏差应该是多少?

计算就很简单了,对其求出的方差1.25进行开方运算即可得到大约1.118

可以使用numpy库中的std函数就可以非常简单的求解,代码&执行如下:

liumiaocn:tmp liumiao$ cat np-6.py 
#!/usr/local/bin/python
import numpy as np
arr = np.array([1,2,3,4])
print("variance of [1,2,3,4]:", np.var(arr))
print("sqrt of variance [1,2,3,4]:",np.sqrt(np.var(arr)))
print("standard deviation: np.std()", np.std(arr))
liumiaocn:tmp liumiao$ python np-6.py 
('variance of [1,2,3,4]:', 1.25)
('sqrt of variance [1,2,3,4]:', 1.118033988749895)
('standard deviation: np.std()', 1.118033988749895)
liumiaocn:tmp liumiao$ 

sample standard deviation: 样本标准偏差

标准偏差是对总体样本进行求解,如果有取样,则需要使用样本标准偏差,它也是一个求开方的运算,但是对象不是方差,方差使用是各个数据与数学均值的差的求和的均值,简单来说除的对象是N,样本偏差则是N-1。

计算: 一组数据1,2,3,4,其样本标准偏差应该是多少?
计算如下:
均值=(1+2+3+4)/4=2.5
样本标准偏差的方差=((1-2.5)^2 + (2-2.5)^2 + (3-2.5)^2 +(4-2.5)^2)/3 = (2.25+0.25+0.25+2.25)/4 = 5/3
所以对5/3开方运算所得到的就是样本标准偏差为:1.29

同样适用numpy的std函数就可以做到这点,只需要将其一个Optional的参数设定为1即可,代码&执行如下:

liumiaocn:tmp liumiao$ cat np-7.py 
#!/usr/local/bin/python
import numpy as np
arr = np.array([1,2,3,4])
print("sample standard deviation: np.std()", np.std(arr, ddof=1))
liumiaocn:tmp liumiao$ python np-7.py 
('sample standard deviation: np.std()', 1.2909944487358056)
liumiaocn:tmp liumiao$

注意:matlab中的std实际指的是样本标准偏差,这点需要注意,如果你的代码从matlab上copy过来,请注意其实际的意义是标准偏差还是样本标准偏差

Covariance:协方差

协方差和方差较为接近,区别在于除数为N-1。

计算: 一组数据1,2,3,4,其协方差应该是多少?

计算如下:

均值=(1+2+3+4)/4=2.5
方差=((1-2.5)^2 + (2-2.5)^2 + (3-2.5)^2 +(4-2.5)^2)/(4-1) = (2.25+0.25+0.25+2.25)/3 = 1.66667

使用numpy的cov函数即可简单求出,代码和执行结果如下:

liumiaocn:tmp liumiao$ cat np-8.py 
#!/usr/local/bin/python
import numpy as np
arr = np.array([1,2,3,4])
print("Covariance: np.cov()", np.cov(arr))
liumiaocn:tmp liumiao$ python np-8.py 
('Covariance: np.cov()', array(1.66666667))
liumiaocn:tmp liumiao$

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

python pandas库中DataFrame对行和列的操作实例讲解

用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis,...

TensorFlow入门使用 tf.train.Saver()保存模型

关于模型保存的一点心得 saver = tf.train.Saver(max_to_keep=3) 在定义 saver 的时候一般会定义最多保存模型的数量,一般来说,如果模型本身很...

教你用Type Hint提高Python程序开发效率

简介 Type Hint(或者叫做PEP-484)提供了一种针对Python程序的类型标注标准。 为什么使用Type Hint?对于动态语言而言,常常出现的情况是当你写了一段代码后,隔段...

Python实现删除时保留特定文件夹和文件的示例

实现功能:删除当前目录下,除保留目录和文件外的所有文件和目录 #!bin/env python import os import os.path import shutil def...

Python中format()格式输出全解

Python中format()格式输出全解

格式化输出:format() format():把传统的%替换为{}来实现格式化输出 1.使用位置参数:就是在字符串中把需要输出的变量值用{}来代替,然后用format()来修改使之成为...