Python实现二维曲线拟合的方法

yipeiwu_com5年前Python基础

如下所示:

from numpy import *
import numpy as np
import matplotlib.pyplot as plt

plt.close()
fig=plt.figure()
plt.grid(True)
plt.axis([0,10,0,8])

#列出数据
point=[[1,2],[2,3],[3,6],[4,7],[6,5],[7,3],[8,2]]
plt.xlabel("X")
plt.ylabel("Y")

#用于求出矩阵中各点的值
XSum = 0.0
X2Sum = 0.0
X3Sum = 0.0
X4Sum = 0.0
ISum = 0.0
YSum = 0.0
XYSum = 0.0
X2YSum = 0.0


#列出各点的位置
for i in range(0,len(point)):

 xi=point[i][0]
 yi=point[i][1]
 plt.scatter(xi,yi,color="red")
 show_point = "("+ str(xi) +","+ str(yi) + ")"
 plt.text(xi,yi,show_point)

 XSum = XSum+xi
 X2Sum = X2Sum+xi**2
 X3Sum = X3Sum + xi**3
 X4Sum = X4Sum + xi**4
 ISum = ISum+1
 YSum = YSum+yi
 XYSum = XYSum+xi*yi
 X2YSum = X2YSum + xi**2*yi

# 进行矩阵运算
# _mat1 设为 mat1 的逆矩阵
m1=[[ISum,XSum, X2Sum],[XSum, X2Sum, X3Sum],[X2Sum, X3Sum, X4Sum]]
mat1 = np.matrix(m1)
m2=[[YSum], [XYSum], [X2YSum]]
mat2 = np.matrix(m2)
_mat1 =mat1.getI()
mat3 = _mat1*mat2

# 用list来提取矩阵数据
m3=mat3.tolist()
a = m3[0][0]
b = m3[1][0]
c = m3[2][0]
# 绘制回归线
x = np.linspace(0,10)
y = a + b*x + c*x**2
plt.plot(x,y)
show_line = "y="+str(a)+"+("+str(b)+"x)"+"+("+str(c)+"x2)";
plt.title(show_line)
plt.show()

以上这篇Python实现二维曲线拟合的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pandas 中对特征进行硬编码和onehot编码的实现

pandas 中对特征进行硬编码和onehot编码的实现

首先介绍两种编码方式硬编码和onehot编码,在模型训练所需要数据中,特征要么为连续,要么为离散特征,对于那些值为非数字的离散特征,我们要么对他们进行硬编码,要么进行onehot编码,转...

Python中交换两个元素的实现方法

Python既具有普通程序开发语言的特点,也具有Matlab语言用于数值计算的特点,,当然了数值计算是由其其强大的第三方库numpy实现的,矩阵在python中数据类型是ndarray,...

python常用函数详解

1.函数的介绍 为什么要有函数?因为在平时写代码时,如果没有函数的话,那么将会出现很多重复的代码,这样代码重用率就比较低。。。并且这样的代码维护起来也是很有难度的,为了解决这些问题,就出...

Python3 Random模块代码详解

描述 random() 方法返回随机生成的一个实数,它在[0,1)范围内。 import random help(random) FUNCTIONS betavariate(a...

pytorch中torch.max和Tensor.view函数用法详解

torch.max() 1. torch.max()简单来说是返回一个tensor中的最大值。 例如: >>> si=torch.randn(4,5) >&g...