Python实现SQL注入检测插件实例代码

yipeiwu_com5年前Python基础

扫描器需要实现的功能思维导图


爬虫编写思路

首先需要开发一个爬虫用于收集网站的链接,爬虫需要记录已经爬取的链接和待爬取的链接,并且去重,用 Python 的set()就可以解决,大概流程是:

  • 输入 URL
  • 下载解析出 URL
  • URL 去重,判断是否为本站
  • 加入到待爬列表
  • 重复循环

SQL 判断思路

  • 通过在 URL 后面加上AND %d=%d或者OR NOT (%d>%d)
  • %d后面的数字是随机可变的
  • 然后搜索网页中特殊关键词,比如:

MySQL 中是 SQL syntax.*MySQL
Microsoft SQL Server 是 Warning.*mssql_
Microsoft Access 是 Microsoft Access Driver
Oracle 是 Oracle error
IBM DB2 是 DB2 SQL error
SQLite 是 SQLite.Exception
...

通过这些关键词就可以判断出所用的数据库

  • 还需要判断一下 waf 之类的东西,有这种东西就直接停止。简单的方法就是用特定的 URL 访问,如果出现了像IP banned,fierwall之类的关键词,可以判断出是waf。具体的正则表达式是(?i)(\A|\b)IP\b.*\b(banned|blocked|bl(a|o)ck\s?list|firewall)
  • 开发准备展开目录

请安装这些库

pip install requests
pip install beautifulsoup4

实验环境是 Linux,创建一个Code目录,在其中创建一个work文件夹,将其作为工作目录

目录结构

/w8ay.py  // 项目启动主文件
/lib/core // 核心文件存放目录
/lib/core/config.py // 配置文件
/script   // 插件存放
/exp      // exp和poc存放

步骤

SQL 检测脚本编写

DBMS_ERRORS = {
  'MySQL': (r"SQL syntax.*MySQL", r"Warning.*mysql_.*", r"valid MySQL result", r"MySqlClient\."),
  "PostgreSQL": (r"PostgreSQL.*ERROR", r"Warning.*\Wpg_.*", r"valid PostgreSQL result", r"Npgsql\."),
  "Microsoft SQL Server": (r"Driver.* SQL[\-\_\ ]*Server", r"OLE DB.* SQL Server", r"(\W|\A)SQL Server.*Driver", r"Warning.*mssql_.*", r"(\W|\A)SQL Server.*[0-9a-fA-F]{8}", r"(?s)Exception.*\WSystem\.Data\.SqlClient\.", r"(?s)Exception.*\WRoadhouse\.Cms\."),
  "Microsoft Access": (r"Microsoft Access Driver", r"JET Database Engine", r"Access Database Engine"),
  "Oracle": (r"\bORA-[0-9][0-9][0-9][0-9]", r"Oracle error", r"Oracle.*Driver", r"Warning.*\Woci_.*", r"Warning.*\Wora_.*"),
  "IBM DB2": (r"CLI Driver.*DB2", r"DB2 SQL error", r"\bdb2_\w+\("),
  "SQLite": (r"SQLite/JDBCDriver", r"SQLite.Exception", r"System.Data.SQLite.SQLiteException", r"Warning.*sqlite_.*", r"Warning.*SQLite3::", r"\[SQLITE_ERROR\]"),
  "Sybase": (r"(?i)Warning.*sybase.*", r"Sybase message", r"Sybase.*Server message.*"),
}

通过正则表达式就可以判断出是哪个数据库了

for (dbms, regex) in ((dbms, regex) for dbms in DBMS_ERRORS for regex in DBMS_ERRORS[dbms]):
  if (re.search(regex,_content)):
    return True

下面是我们测试语句的payload

BOOLEAN_TESTS = (" AND %d=%d", " OR NOT (%d=%d)")

用报错语句返回正确的内容和错误的内容进行对比

for test_payload in BOOLEAN_TESTS:
  # Right Page
  RANDINT = random.randint(1, 255)
  _url = url + test_payload % (RANDINT, RANDINT)
  content["true"] = Downloader.get(_url)
  _url = url + test_payload % (RANDINT, RANDINT + 1)
  content["false"] = Downloader.get(_url)
  if content["origin"] == content["true"] != content["false"]:
    return "sql found: %" % url

这句

content["origin"] == content["true"] != content["false"]

意思就是当原始网页等于正确的网页不等于错误的网页内容时,就可以判定这个地址存在注入漏洞

完整代码:

import re, random
from lib.core import Download
def sqlcheck(url):
  if (not url.find("?")): # Pseudo-static page
    return false;
  Downloader = Download.Downloader()
  BOOLEAN_TESTS = (" AND %d=%d", " OR NOT (%d=%d)")
  DBMS_ERRORS = {
    # regular expressions used for DBMS recognition based on error message response
    "MySQL": (r"SQL syntax.*MySQL", r"Warning.*mysql_.*", r"valid MySQL result", r"MySqlClient\."),
    "PostgreSQL": (r"PostgreSQL.*ERROR", r"Warning.*\Wpg_.*", r"valid PostgreSQL result", r"Npgsql\."),
    "Microsoft SQL Server": (r"Driver.* SQL[\-\_\ ]*Server", r"OLE DB.* SQL Server", r"(\W|\A)SQL Server.*Driver", r"Warning.*mssql_.*", r"(\W|\A)SQL Server.*[0-9a-fA-F]{8}", r"(?s)Exception.*\WSystem\.Data\.SqlClient\.", r"(?s)Exception.*\WRoadhouse\.Cms\."),
    "Microsoft Access": (r"Microsoft Access Driver", r"JET Database Engine", r"Access Database Engine"),
    "Oracle": (r"\bORA-[0-9][0-9][0-9][0-9]", r"Oracle error", r"Oracle.*Driver", r"Warning.*\Woci_.*", r"Warning.*\Wora_.*"),
    "IBM DB2": (r"CLI Driver.*DB2", r"DB2 SQL error", r"\bdb2_\w+\("),
    "SQLite": (r"SQLite/JDBCDriver", r"SQLite.Exception", r"System.Data.SQLite.SQLiteException", r"Warning.*sqlite_.*", r"Warning.*SQLite3::", r"\[SQLITE_ERROR\]"),
    "Sybase": (r"(?i)Warning.*sybase.*", r"Sybase message", r"Sybase.*Server message.*"),
  }
  _url = url + "%29%28%22%27"
  _content = Downloader.get(_url)
  for (dbms, regex) in ((dbms, regex) for dbms in DBMS_ERRORS for regex in DBMS_ERRORS[dbms]):
    if (re.search(regex,_content)):
      return True
  content = {}
  content['origin'] = Downloader.get(_url)
  for test_payload in BOOLEAN_TESTS:
    # Right Page
    RANDINT = random.randint(1, 255)
    _url = url + test_payload % (RANDINT, RANDINT)
    content["true"] = Downloader.get(_url)
    _url = url + test_payload % (RANDINT, RANDINT + 1)
    content["false"] = Downloader.get(_url)
    if content["origin"] == content["true"] != content["false"]:
      return "sql found: %" % url

将这个文件命名为sqlcheck.py,放在/script目录中。代码的第 4 行作用是查找 URL 是否包含?,如果不包含,比方说伪静态页面,可能不太好注入,因此需要过滤掉

爬虫的编写

爬虫的思路上面讲过了,先完成 URL 的管理,我们单独将它作为一个类,文件保存在/lib/core/UrlManager.py

#-*- coding:utf-8 -*-

class UrlManager(object):
  def __init__(self):
    self.new_urls = set()
    self.old_urls = set()
    
  def add_new_url(self, url):
    if url is None:
      return
    if url not in self.new_urls and url not in self.old_urls:
      self.new_urls.add(url)
   
  def add_new_urls(self, urls):
    if urls is None or len(urls) == 0:
      return
    for url in urls:
      self.add_new_url(url)
    
  def has_new_url(self):
    return len(self.new_urls) != 0
   
  def get_new_url(self):
    new_url = self.new_urls.pop()
    self.old_urls.add(new_url)
    return new_url

为了方便,我们也将下载功能单独作为一个类使用,文件保存在lib/core/Downloader.py

#-*- coding:utf-8 -*-
import requests

class Downloader(object):
  def get(self, url):
    r = requests.get(url, timeout = 10)
    if r.status_code != 200:
      return None
    _str = r.text
    return _str
  
  def post(self, url, data):
    r = requests.post(url, data)
    _str = r.text
    return _str
  
  def download(self, url, htmls):
    if url is None:
      return None
    _str = {}
    _str["url"] = url
    try:
      r = requests.get(url, timeout = 10)
      if r.status_code != 200:
        return None
      _str["html"] = r.text
    except Exception as e:
      return None
    htmls.append(_str)

特别说明,因为我们要写的爬虫是多线程的,所以类中有个download方法是专门为多线程下载专用的

在lib/core/Spider.py中编写爬虫

#-*- coding:utf-8 -*-

from lib.core import Downloader, UrlManager
import threading
from urllib import parse
from urllib.parse import urljoin
from bs4 import BeautifulSoup

class SpiderMain(object):
  def __init__(self, root, threadNum):
    self.urls = UrlManager.UrlManager()
    self.download = Downloader.Downloader()
    self.root = root
    self.threadNum = threadNum
  
  def _judge(self, domain, url):
    if (url.find(domain) != -1):
      return True
    return False
  
  def _parse(self, page_url, content):
    if content is None:
      return
    soup = BeautifulSoup(content, 'html.parser')
    _news = self._get_new_urls(page_url, soup)
    return _news
    
  def _get_new_urls(self, page_url, soup):
    new_urls = set()
    links = soup.find_all('a')
    for link in links:
      new_url = link.get('href')
      new_full_url = urljoin(page_url, new_url)
      if (self._judge(self.root, new_full_url)):
        new_urls.add(new_full_url)
    return new_urls
    
  def craw(self):
    self.urls.add_new_url(self.root)
    while self.urls.has_new_url():
      _content = []
      th = []
      for i in list(range(self.threadNum)):
        if self.urls.has_new_url() is False:
          break
        new_url = self.urls.get_new_url()
        
        ## sql check
        try:
          if (sqlcheck.sqlcheck(new_url)):
            print("url:%s sqlcheck is valueable" % new_url)
        except:
          pass
            
        print("craw:" + new_url)
        t = threading.Thread(target = self.download.download, args = (new_url, _content))
        t.start()
        th.append(t)
      for t in th:
        t.join()
      for _str in _content:
        if _str is None:
          continue
        new_urls = self._parse(new_url, _str["html"])
        self.urls.add_new_urls(new_urls)

爬虫通过调用craw()方法传入一个网址进行爬行,然后采用多线程的方法下载待爬行的网站,下载之后的源码用_parse方法调用BeautifulSoup进行解析,之后将解析出的 URL 列表丢入 URL 管理器,这样循环,最后只要爬完了网页,爬虫就会停止

threading库可以自定义需要开启的线程数,线程开启后,每个线程会得到一个 url 进行下载,然后线程会阻塞,阻塞完毕后线程放行

爬虫和 SQL 检查的结合

在lib/core/Spider.py文件引用一下from script import sqlcheck,在craw()方法中,取出新的 URL 地方调用一下

##sql check
try:
  if(sqlcheck.sqlcheck(new_url)):
    print("url:%s sqlcheck is valueable"%new_url)
except:
  pass

用try检测可能出现的异常,绕过它,在文件w8ay.py中进行测试

#-*- coding:utf-8 -*-
'''
Name: w8ayScan
Author: mathor
Copyright (c) 2019
'''
import sys
from lib.core.Spider import SpiderMain
def main():
  root = "https://wmathor.com"
  threadNum = 50
  w8 = SpiderMain(root, threadNum)
  w8.craw()
 
if __name__ == "__main__":
  main()

很重要的一点!为了使得lib和script文件夹中的.py文件可以可以被认作是模块,请在lib、lib/core和script文件夹中创建__init__.py文件,文件中什么都不需要写

总结

SQL 注入检测通过一些payload使页面出错,判断原始网页,正确网页,错误网页即可检测出是否存在 SQL 注入漏洞
通过匹配出 sql 报错出来的信息,可以正则判断所用的数据库

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对【听图阁-专注于Python设计】的支持。

相关文章

python用户评论标签匹配的解决方法

python用户评论标签匹配的解决方法

我们观察用户评论发现:属性词往往和情感词伴随出现,原因是用户通常会在描述属性时表达情感,属性是情感表达的对象。还发现:属性词和专用情感词基本都是名词或形容词(形谓词)。 算法流程图如下:...

Python找出9个连续的空闲端口

一、项目需求 安装某软件,配置时候需要填写空闲的端口。查看5个平台的某个端口是否被占用 5个平台为windows, linux, aix, hp, solaris 二、实现方案有两种 1...

Python3 文章标题关键字提取的例子

Python3 文章标题关键字提取的例子

思路: 1.读取所有文章标题; 2.用“结巴分词”的工具包进行文章标题的词语分割; 3.用“sklearn”的工具包计算Tf-idf(词频-逆文档率); 4.得到满足关键词权重阈值的词...

对python3 一组数值的归一化处理方法详解

1、什么是归一化: 归一化就是把一组数(大于1)化为以1为最大值,0为最小值,其余数据按百分比计算的方法。如:1,2,3.,那归一化后就是:0,0.5,1 2、归一化步骤: 如:2,4,...

Python 取numpy数组的某几行某几列方法

Python 取numpy数组的某几行某几列方法

直接分析,如原矩阵如下(1):   (1) 我们要截取的矩阵(取其一三行,和三四列数据构成矩阵)为如下(2):   (2) 错误分析: 取 C 的1 3行...