pandas数据集的端到端处理

yipeiwu_com5年前Python基础

1. 数据集基本信息

df = pd.read_csv()

df.head():前五行;

df.info():

  • rangeindex:行索引;
  • data columns:列索引;
  • dtypes:各个列的类型,
  • 主体部分是各个列值的情况,比如可判断是否存在 NaN 值;

对于非数值型的属性列

  • df[‘some_categorical_columns'].value_counts():取值分布;

df.describe(): 各个列的基本统计信息

  • count
  • mean
  • std
  • min/max
  • 25%, 50%, 75%:分位数

df.hist(bins=50, figsize=(20, 15)):统计直方图;

对 df 的每一列进行展示:

train_prices = pd.DataFrame({'price': train_df.SalePrice, 
    'log(price+1)': np.log1p(train_df.SalePrice)})
 # train_prices 共两列,一列列名为 price,一列列名为 log(price+1)
train_prices.hist()

2. 数据集拆分

def split_train_test(data, test_ratio=.3):
 shuffled_indices = np.random.permutation(len(data))
 test_size = int(len(data)*test_ratio)
 test_indices = shuffled_indices[:test_size]
 train_indices = shuffled_indices[test_size:]
 return data.iloc[train_indices], data.iloc[test_indices]

3. 数据预处理

  • 一键把 categorical 型特征(字符串类型)转化为数值型:
>> df['label'] = pd.Categorical(df['label']).codes
  • 一键把 categorical 型特征(字符串类型)转化为 one-hot 编码:
>> df = pd.get_dummies(df)
  • null 值统计与填充:
>> df.isnull().sum().sort_values(ascending=False).head()
# 填充为 mean 值
>> mean_cols = df.mean()
>> df = df.fillna(mean_cols)
>> df.isnull().sum().sum()
0

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

Python解析Excle文件中的数据方法

Python解析Excle文件中的数据方法

在公司里面,人力资源部每到发工资的时候就会头疼,如果公司内部有100多号员工,那么发完工资后需要给员工发送工资条的话,那么就需要截图如下图, 但是在公司的薪水保密协议不允许公开所有人的...

matplotlib给子图添加图例的方法

matplotlib给子图添加图例的方法

代码如下: import matplotlib.pyplot as plt x = [1,2,3,4,5,6,7,8] y = [5,2,4,2,1,4,5,2] axe1 = p...

在Django框架中运行Python应用全攻略

我们来假定下面的这些概念、字段和关系:     一个作者有姓,有名及email地址。     出版商有名称,地址,所...

python递归下载文件夹下所有文件

最近想备份网站,但是php下载文件的大小是有大小限制的,而我也懒得装ftp再下载了,就想着暂时弄个二级域名站,然后用python(python3)的requests库直接下载网站根目录下...

Python中文分词工具之结巴分词用法实例总结【经典案例】

Python中文分词工具之结巴分词用法实例总结【经典案例】

本文实例讲述了Python中文分词工具之结巴分词用法。分享给大家供大家参考,具体如下: 结巴分词工具的安装及基本用法,前面的文章《Python结巴中文分词工具使用过程中遇到的问题及解决方...